欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

leetcode-42-接雨水-java

程序员文章站 2022-07-07 15:15:52
...

题目及测试

package pid042;
/*接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。

示例:https://leetcode-cn.com/problems/trapping-rain-water/

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6


*/
public class main {
	
	public static void main(String[] args) {
		int[][] testTable = {{0,1,0,2,1,0,1,3,2,1,2,1}};
		for (int[] ito : testTable) {
			test(ito);
		}
	}
		 
	private static void test(int[] ito) {
		Solution solution = new Solution();
		int rtn;
		long begin = System.currentTimeMillis();
		for (int i = 0; i < ito.length; i++) {
		    System.out.print(ito[i]+" ");
		}//开始时打印数组
		rtn = solution.trap(ito);//执行程序
		long end = System.currentTimeMillis();		
		System.out.println("rtn=" + rtn);
		/*for (int i = 0; i < rtn; i++) {
		    System.out.print(ito[i]+" ");
		}//打印结果几数组
*/		System.out.println();
		System.out.println("耗时:" + (end - begin) + "ms");
		System.out.println("-------------------");
	}

}

自己没想出来

解法1(别人的)

黑色的看成墙,蓝色的看成水,宽度一样,给定一个数组,每个数代表从左到右墙的高度,求出能装多少单位的水。也就是图中蓝色正方形的个数。

这是我最开始想到的一个解法,提交后直接 AC 了,自己都震惊了。就是先求高度为 1 的水,再求高度为 2 的水,再求高度为 3 的水。

整个思路就是,求第 i 层的水,遍历每个位置,如果当前的高度小于 i,并且两边有高度大于等于 i 的,说明这个地方一定有水,水就可以加 1。

如果求高度为 i 的水,首先用一个变量 temp 保存当前累积的水,初始化为 0。从左到右遍历墙的高度,遇到高度大于等于 i 的时候,开始更新 temp。更新原则是遇到高度小于 i 的就把 temp 加 1,遇到高度大于等于 i 的,就把 temp 加到最终的答案 ans 里,并且 temp 置零,然后继续循环。

我们就以题目的例子讲一下。

先求第 1行的水。

leetcode-42-接雨水-java

也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ] 。

原则是高度小于 1,temp ++,高度大于等于 1,ans = ans + temp,temp = 0。

temp 初始化为 0,ans = 0

height[0] 等于 0 < 1,不更新。

height[1] 等于 1 >= 1,开始更新 temp。

height[2] 等于 0 < 1,temp = temp + 1 = 1。

height[3] 等于 2 >= 1,ans = ans + temp = 1,temp = 0。

height[4] 等于 1 >= 1,ans = ans + temp = 1,temp = 0。

height[5] 等于 0 < 1,temp = temp + 1 = 1。

height[6] 等于 1 >= 1,ans = ans + temp = 2,temp = 0。

剩下的 height[7] 到最后,高度都大于等于 1,更新 ans = ans + temp = 2,temp = 0。而其实 temp 一直都是 0,所以 ans 没有变化。

再求第 2 行的水。

leetcode-42-接雨水-java

也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ]。

原则是高度小于 2,temp ++,高度大于等于 2,ans = ans + temp,temp = 0。

temp 初始化为 0,ans 此时等于 2。

height[0] 等于 0 < 2,不更新。

height[1] 等于 1 < 2,不更新。

height[2] 等于 0 < 2,不更新。

height[3] 等于 2 >= 2,开始更新

height[4] 等于 1 < 2,temp = temp + 1 = 1。

height[5] 等于 0 < 2,temp = temp + 1 = 2。

height[6] 等于 1 < 2,temp = temp + 1 = 3。

height[7] 等于 3 >= 2,ans = ans + temp = 5,temp = 0。

height[8] 等于 2 >= 2,ans = ans + temp = 3,temp = 0。

height[9] 等于 1 < 2,temp = temp + 1 = 1。

height[10] 等于 2 >= 2,ans = ans + temp = 6,temp = 0。

height[11] 等于 1 < 2,temp = temp + 1 = 1。

然后结束循环,此时的 ans 就是6。

再看第 3 层。

leetcode-42-接雨水-java

按照之前的算法,之前的都是小于 3 的,不更新 temp,然后到 height[7] 等于 3,开始更新 temp,但是后边没有 height 大于等于 3 了,所以 ans 没有更新。

所以最终的 ans 就是 6。

public int trap(int[] height) {
    int sum = 0;
    int max = getMax(height);//找到最大的高度,以便遍历。
    for (int i = 1; i <= max; i++) {
        boolean isStart = false; //标记是否开始更新 temp
        int temp_sum = 0;
        for (int j = 0; j < height.length; j++) {
            if (isStart && height[j] < i) {
                temp_sum++;
            }
            if (height[j] >= i) {
                sum = sum + temp_sum;
                temp_sum = 0;
                isStart = true;
            }
        }
    }
    return sum;
}
private int getMax(int[] height) {
		int max = 0;
		for (int i = 0; i < height.length; i++) {
			if (height[i] > max) {
				max = height[i];
			}
		}
		return max;
}

解法2(别人的)

按列求

求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。

装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。

所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。

较矮的墙的高度大于当前列的墙的高度

leetcode-42-接雨水-java

把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。

leetcode-42-接雨水-java

这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?

很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1,可以存一个单位的水。

较矮的墙的高度小于当前列的墙的高度

leetcode-42-接雨水-java

同样的,我们把其他无关的列去掉。

leetcode-42-接雨水-java

想象下,往两边最高的墙之间注水。正在求的列会有多少水?

正在求的列不会有水,因为它大于了两边较矮的墙。

较矮的墙的高度等于当前列的墙的高度。

和上一种情况是一样的,不会有水。

leetcode-42-接雨水-java

明白了这三种情况,程序就很好写了,遍历每一列,然后分别求出这一列两边最高的墙。找出较矮的一端,和当前列的高度比较,结果就是上边的三种情况。

public int trap(int[] height) {
    int sum = 0;
    //最两端的列不用考虑,因为一定不会有水。所以下标从 1 到 length - 2
    for (int i = 1; i < height.length - 1; i++) {
        int max_left = 0;
        //找出左边最高
        for (int j = i - 1; j >= 0; j--) {
            if (height[j] > max_left) {
                max_left = height[j];
            }
        }
        int max_right = 0;
        //找出右边最高
        for (int j = i + 1; j < height.length; j++) {
            if (height[j] > max_right) {
                max_right = height[j];
            }
        }
        //找出两端较小的
        int min = Math.min(max_left, max_right);
        //只有较小的一段大于当前列的高度才会有水,其他情况不会有水
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

解法3(别人的)

动态规划

我们注意到,解法二中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。

首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的,和 leetcode 上边的讲的有些不同)

对于 max_left我们其实可以这样求。

max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。

对于 max_right我们可以这样求。

max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。

这样,我们再利用解法二的算法,就不用在 for 循环里每次重新遍历一次求 max_left 和 max_right 了。

public int trap(int[] height) {
    int sum = 0;
    int[] max_left = new int[height.length];
    int[] max_right = new int[height.length];
    
    for (int i = 1; i < height.length - 1; i++) {
        max_left[i] = Math.max(max_left[i - 1], height[i - 1]);
    }
    for (int i = height.length - 2; i >= 0; i--) {
        max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
    }
    for (int i = 1; i < height.length - 1; i++) {
        int min = Math.min(max_left[i], max_right[i]);
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

解法4(别人的)

双指针

动态规划中,我们常常可以对空间复杂度进行进一步的优化。

例如这道题中,可以看到,max_left [ i ] 和 max_right [ i ] 数组中的元素我们其实只用一次,然后就再也不会用到了。所以我们可以不用数组,只用一个元素就行了。我们先改造下 max_left。

public int trap(int[] height) {
    int sum = 0;
    int max_left = 0;
    int[] max_right = new int[height.length];
    for (int i = height.length - 2; i >= 0; i--) {
        max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
    }
    for (int i = 1; i < height.length - 1; i++) {
        max_left = Math.max(max_left, height[i - 1]);
        int min = Math.min(max_left, max_right[i]);
        if (min > height[i]) {
            sum = sum + (min - height[i]);
        }
    }
    return sum;
}

我们成功将 max_left 数组去掉了。但是会发现我们不能同时把 max_right 的数组去掉,因为最后的 for 循环是从左到右遍历的,而 max_right 的更新是从右向左的。

所以这里要用到两个指针,left 和 right,从两个方向去遍历。

那么什么时候从左到右,什么时候从右到左呢?根据下边的代码的更新规则,我们可以知道

max_left = Math.max(max_left, height[i - 1]);

height [ left - 1] 是可能成为 max_left 的变量, 同理,height [ right + 1 ] 是可能成为 right_max 的变量。

只要保证 height [ left - 1 ] < height [ right + 1 ] ,那么 max_left 就一定小于 max_right。

因为 max_left 是由 height [ left - 1] 更新过来的,而 height [ left - 1 ] 是小于 height [ right + 1] 的,而 height [ right + 1 ] 会更新 max_right,所以间接的得出 max_left 一定小于 max_right。

反之,我们就从右到左更。

具体说明:

我们先明确几个变量的意思:

left_max:左边的最大值,它是从左往右遍历找到的
right_max:右边的最大值,它是从右往左遍历找到的
left:从左往右处理的当前下标
right:从右往左处理的当前下标

定理一:在某个位置i处,它能存的水,取决于它左右两边的最大值中较小的一个。

定理二:当我们从左往右处理到left下标时,左边的最大值left_max对它而言是可信的,但right_max对它而言是不可信的。(见下图,由于中间状况未知,对于left下标而言,right_max未必就是它右边最大的值)

定理三:当我们从右往左处理到right下标时,右边的最大值right_max对它而言是可信的,但left_max对它而言是不可信的。

                                   right_max
 left_max                             __
   __                                |  |
  |  |__   __??????????????????????  |  |
__|     |__|                       __|  |__
        left                      right

对于位置left而言,它左边最大值一定是left_max,右边最大值“大于等于”right_max,这时候,如果left_max<right_max成立,那么它就知道自己能存多少水了。无论右边将来会不会出现更大的right_max,都不影响这个结果。 所以当left_max<right_max时,我们就希望去处理left下标,反之,我们希望去处理right下标。

public int trap(int[] height) {
    int sum = 0;
    int max_left = 0;
    int max_right = 0;
    int left = 1;
    int right = height.length - 2; // 加右指针进去
    for (int i = 1; i < height.length - 1; i++) {
        //从左到右更
        if (height[left - 1] < height[right + 1]) {
            max_left = Math.max(max_left, height[left - 1]);
            int min = max_left;
            if (min > height[left]) {
                sum = sum + (min - height[left]);
            }
            left++;
        //从右到左更
        } else {
            max_right = Math.max(max_right, height[right + 1]);
            int min = max_right;
            if (min > height[right]) {
                sum = sum + (min - height[right]);
            }
            right--;
        }
    }
    return sum;
}

解法5(别人的)

说到栈,我们肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。

leetcode-42-接雨水-java

我们用栈保存每堵墙。

当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。

如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。

总体的原则就是,

当前高度小于等于栈顶高度,入栈,指针后移。

当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。

我们看具体的例子。

首先将 height [ 0 ] 入栈。然后 current 指向的高度大于栈顶高度,所以把栈顶 height [ 0 ] 出栈,然后栈空了,再把 height [ 1 ] 入栈。current 后移。

leetcode-42-接雨水-java

然后 current 指向的高度小于栈顶高度,height [ 2 ] 入栈,current 后移。

leetcode-42-接雨水-java

然后 current 指向的高度大于栈顶高度,栈顶 height [ 2 ] 出栈。计算 height [ 3 ] 和新的栈顶之间的水。计算完之后继续判断 current 和新的栈顶的关系。

leetcode-42-接雨水-java

current 指向的高度大于栈顶高度,栈顶 height [ 1 ] 出栈,栈空。所以把 height [ 3 ] 入栈。currtent 后移。

leetcode-42-接雨水-java

然后 current 指向的高度小于栈顶 height [ 3 ] 的高度,height [ 4 ] 入栈。current 后移。

leetcode-42-接雨水-java

然后 current 指向的高度小于栈顶 height [ 4 ] 的高度,height [ 5 ] 入栈。current 后移。

leetcode-42-接雨水-java

然后 current 指向的高度大于栈顶 height [ 5 ] 的高度,将栈顶 height [ 5 ] 出栈,然后计算 current 指向的墙和新栈顶 height [ 4 ] 之间的水。计算完之后继续判断 current 的指向和新栈顶的关系。此时 height [ 6 ] 不大于栈顶 height [ 4 ] ,所以将 height [ 6 ] 入栈。current 后移。

leetcode-42-接雨水-java

然后 current 指向的高度大于栈顶高度,将栈顶 height [ 6 ] 出栈。计算和新的栈顶 height [ 4 ] 组成两个边界中的水。然后判断 current 和新的栈顶 height [ 4 ] 的关系,依旧是大于,所以把 height [ 4 ] 出栈。计算 current 和 新的栈顶 height [ 3 ] 之间的水。然后判断 current 和新的栈顶 height [ 3 ] 的关系,依旧是大于,所以把 height [ 3 ] 出栈,栈空。将 current 指向的 height [ 7 ] 入栈。current 后移。

其实不停的出栈,可以看做是在找与 7 匹配的墙,也就是 3 。

leetcode-42-接雨水-java

而对于计算 current 指向墙和新的栈顶之间的水,根据图的关系,我们可以直接把这两个墙当做之前解法三的 max_left 和 max_right,然后之前弹出的栈顶当做每次遍历的 height [ i ]。水量就是 Min ( max _ left ,max _ right ) - height [ i ],只不过这里需要乘上两个墙之间的距离。可以看下代码继续理解下。

public int trap6(int[] height) {
    int sum = 0;
    Stack<Integer> stack = new Stack<>();
    int current = 0;
    while (current < height.length) {
        //如果栈不空并且当前指向的高度大于栈顶高度就一直循环
        while (!stack.empty() && height[current] > height[stack.peek()]) {
            int h = height[stack.peek()]; //取出要出栈的元素
            stack.pop(); //出栈
            if (stack.empty()) { // 栈空就出去
                break; 
            }
            int distance = current - stack.peek() - 1; //两堵墙之前的距离。
            int min = Math.min(height[stack.peek()], height[current]);
            sum = sum + distance * (min - h);
        }
        stack.push(current); //当前指向的墙入栈
        current++; //指针后移
    }
    return sum;
}