leetcode-42-接雨水-java
题目及测试
package pid042;
/*接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。
示例:https://leetcode-cn.com/problems/trapping-rain-water/
输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6
*/
public class main {
public static void main(String[] args) {
int[][] testTable = {{0,1,0,2,1,0,1,3,2,1,2,1}};
for (int[] ito : testTable) {
test(ito);
}
}
private static void test(int[] ito) {
Solution solution = new Solution();
int rtn;
long begin = System.currentTimeMillis();
for (int i = 0; i < ito.length; i++) {
System.out.print(ito[i]+" ");
}//开始时打印数组
rtn = solution.trap(ito);//执行程序
long end = System.currentTimeMillis();
System.out.println("rtn=" + rtn);
/*for (int i = 0; i < rtn; i++) {
System.out.print(ito[i]+" ");
}//打印结果几数组
*/ System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
自己没想出来
解法1(别人的)
黑色的看成墙,蓝色的看成水,宽度一样,给定一个数组,每个数代表从左到右墙的高度,求出能装多少单位的水。也就是图中蓝色正方形的个数。
这是我最开始想到的一个解法,提交后直接 AC 了,自己都震惊了。就是先求高度为 1 的水,再求高度为 2 的水,再求高度为 3 的水。
整个思路就是,求第 i 层的水,遍历每个位置,如果当前的高度小于 i,并且两边有高度大于等于 i 的,说明这个地方一定有水,水就可以加 1。
如果求高度为 i 的水,首先用一个变量 temp 保存当前累积的水,初始化为 0。从左到右遍历墙的高度,遇到高度大于等于 i 的时候,开始更新 temp。更新原则是遇到高度小于 i 的就把 temp 加 1,遇到高度大于等于 i 的,就把 temp 加到最终的答案 ans 里,并且 temp 置零,然后继续循环。
我们就以题目的例子讲一下。
先求第 1行的水。
也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ] 。
原则是高度小于 1,temp ++,高度大于等于 1,ans = ans + temp,temp = 0。
temp 初始化为 0,ans = 0
height[0] 等于 0 < 1,不更新。
height[1] 等于 1 >= 1,开始更新 temp。
height[2] 等于 0 < 1,temp = temp + 1 = 1。
height[3] 等于 2 >= 1,ans = ans + temp = 1,temp = 0。
height[4] 等于 1 >= 1,ans = ans + temp = 1,temp = 0。
height[5] 等于 0 < 1,temp = temp + 1 = 1。
height[6] 等于 1 >= 1,ans = ans + temp = 2,temp = 0。
剩下的 height[7] 到最后,高度都大于等于 1,更新 ans = ans + temp = 2,temp = 0。而其实 temp 一直都是 0,所以 ans 没有变化。
再求第 2 行的水。
也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ]。
原则是高度小于 2,temp ++,高度大于等于 2,ans = ans + temp,temp = 0。
temp 初始化为 0,ans 此时等于 2。
height[0] 等于 0 < 2,不更新。
height[1] 等于 1 < 2,不更新。
height[2] 等于 0 < 2,不更新。
height[3] 等于 2 >= 2,开始更新
height[4] 等于 1 < 2,temp = temp + 1 = 1。
height[5] 等于 0 < 2,temp = temp + 1 = 2。
height[6] 等于 1 < 2,temp = temp + 1 = 3。
height[7] 等于 3 >= 2,ans = ans + temp = 5,temp = 0。
height[8] 等于 2 >= 2,ans = ans + temp = 3,temp = 0。
height[9] 等于 1 < 2,temp = temp + 1 = 1。
height[10] 等于 2 >= 2,ans = ans + temp = 6,temp = 0。
height[11] 等于 1 < 2,temp = temp + 1 = 1。
然后结束循环,此时的 ans 就是6。
再看第 3 层。
按照之前的算法,之前的都是小于 3 的,不更新 temp,然后到 height[7] 等于 3,开始更新 temp,但是后边没有 height 大于等于 3 了,所以 ans 没有更新。
所以最终的 ans 就是 6。
public int trap(int[] height) {
int sum = 0;
int max = getMax(height);//找到最大的高度,以便遍历。
for (int i = 1; i <= max; i++) {
boolean isStart = false; //标记是否开始更新 temp
int temp_sum = 0;
for (int j = 0; j < height.length; j++) {
if (isStart && height[j] < i) {
temp_sum++;
}
if (height[j] >= i) {
sum = sum + temp_sum;
temp_sum = 0;
isStart = true;
}
}
}
return sum;
}
private int getMax(int[] height) {
int max = 0;
for (int i = 0; i < height.length; i++) {
if (height[i] > max) {
max = height[i];
}
}
return max;
}
解法2(别人的)
按列求
求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。
装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。
所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。
较矮的墙的高度大于当前列的墙的高度
把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。
这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?
很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1,可以存一个单位的水。
较矮的墙的高度小于当前列的墙的高度
同样的,我们把其他无关的列去掉。
想象下,往两边最高的墙之间注水。正在求的列会有多少水?
正在求的列不会有水,因为它大于了两边较矮的墙。
较矮的墙的高度等于当前列的墙的高度。
和上一种情况是一样的,不会有水。
明白了这三种情况,程序就很好写了,遍历每一列,然后分别求出这一列两边最高的墙。找出较矮的一端,和当前列的高度比较,结果就是上边的三种情况。
public int trap(int[] height) {
int sum = 0;
//最两端的列不用考虑,因为一定不会有水。所以下标从 1 到 length - 2
for (int i = 1; i < height.length - 1; i++) {
int max_left = 0;
//找出左边最高
for (int j = i - 1; j >= 0; j--) {
if (height[j] > max_left) {
max_left = height[j];
}
}
int max_right = 0;
//找出右边最高
for (int j = i + 1; j < height.length; j++) {
if (height[j] > max_right) {
max_right = height[j];
}
}
//找出两端较小的
int min = Math.min(max_left, max_right);
//只有较小的一段大于当前列的高度才会有水,其他情况不会有水
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}
解法3(别人的)
动态规划
我们注意到,解法二中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。
首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的,和 leetcode 上边的讲的有些不同)
对于 max_left我们其实可以这样求。
max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。
对于 max_right我们可以这样求。
max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。
这样,我们再利用解法二的算法,就不用在 for 循环里每次重新遍历一次求 max_left 和 max_right 了。
public int trap(int[] height) {
int sum = 0;
int[] max_left = new int[height.length];
int[] max_right = new int[height.length];
for (int i = 1; i < height.length - 1; i++) {
max_left[i] = Math.max(max_left[i - 1], height[i - 1]);
}
for (int i = height.length - 2; i >= 0; i--) {
max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
}
for (int i = 1; i < height.length - 1; i++) {
int min = Math.min(max_left[i], max_right[i]);
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}
解法4(别人的)
双指针
动态规划中,我们常常可以对空间复杂度进行进一步的优化。
例如这道题中,可以看到,max_left [ i ] 和 max_right [ i ] 数组中的元素我们其实只用一次,然后就再也不会用到了。所以我们可以不用数组,只用一个元素就行了。我们先改造下 max_left。
public int trap(int[] height) {
int sum = 0;
int max_left = 0;
int[] max_right = new int[height.length];
for (int i = height.length - 2; i >= 0; i--) {
max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
}
for (int i = 1; i < height.length - 1; i++) {
max_left = Math.max(max_left, height[i - 1]);
int min = Math.min(max_left, max_right[i]);
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}
我们成功将 max_left 数组去掉了。但是会发现我们不能同时把 max_right 的数组去掉,因为最后的 for 循环是从左到右遍历的,而 max_right 的更新是从右向左的。
所以这里要用到两个指针,left 和 right,从两个方向去遍历。
那么什么时候从左到右,什么时候从右到左呢?根据下边的代码的更新规则,我们可以知道
max_left = Math.max(max_left, height[i - 1]);
height [ left - 1] 是可能成为 max_left 的变量, 同理,height [ right + 1 ] 是可能成为 right_max 的变量。
只要保证 height [ left - 1 ] < height [ right + 1 ] ,那么 max_left 就一定小于 max_right。
因为 max_left 是由 height [ left - 1] 更新过来的,而 height [ left - 1 ] 是小于 height [ right + 1] 的,而 height [ right + 1 ] 会更新 max_right,所以间接的得出 max_left 一定小于 max_right。
反之,我们就从右到左更。
具体说明:
我们先明确几个变量的意思:
left_max:左边的最大值,它是从左往右遍历找到的
right_max:右边的最大值,它是从右往左遍历找到的
left:从左往右处理的当前下标
right:从右往左处理的当前下标
定理一:在某个位置i
处,它能存的水,取决于它左右两边的最大值中较小的一个。
定理二:当我们从左往右处理到left下标时,左边的最大值left_max对它而言是可信的,但right_max对它而言是不可信的。(见下图,由于中间状况未知,对于left下标而言,right_max未必就是它右边最大的值)
定理三:当我们从右往左处理到right下标时,右边的最大值right_max对它而言是可信的,但left_max对它而言是不可信的。
right_max
left_max __
__ | |
| |__ __?????????????????????? | |
__| |__| __| |__
left right
对于位置left
而言,它左边最大值一定是left_max,右边最大值“大于等于”right_max,这时候,如果left_max<right_max
成立,那么它就知道自己能存多少水了。无论右边将来会不会出现更大的right_max,都不影响这个结果。 所以当left_max<right_max
时,我们就希望去处理left下标,反之,我们希望去处理right下标。
public int trap(int[] height) {
int sum = 0;
int max_left = 0;
int max_right = 0;
int left = 1;
int right = height.length - 2; // 加右指针进去
for (int i = 1; i < height.length - 1; i++) {
//从左到右更
if (height[left - 1] < height[right + 1]) {
max_left = Math.max(max_left, height[left - 1]);
int min = max_left;
if (min > height[left]) {
sum = sum + (min - height[left]);
}
left++;
//从右到左更
} else {
max_right = Math.max(max_right, height[right + 1]);
int min = max_right;
if (min > height[right]) {
sum = sum + (min - height[right]);
}
right--;
}
}
return sum;
}
解法5(别人的)
栈
说到栈,我们肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。
我们用栈保存每堵墙。
当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。
如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。
总体的原则就是,
当前高度小于等于栈顶高度,入栈,指针后移。
当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。
我们看具体的例子。
首先将 height [ 0 ] 入栈。然后 current 指向的高度大于栈顶高度,所以把栈顶 height [ 0 ] 出栈,然后栈空了,再把 height [ 1 ] 入栈。current 后移。
然后 current
指向的高度小于栈顶高度,height [ 2 ]
入栈,current
后移。
然后 current 指向的高度大于栈顶高度,栈顶 height [ 2 ] 出栈。计算 height [ 3 ] 和新的栈顶之间的水。计算完之后继续判断 current 和新的栈顶的关系。
current
指向的高度大于栈顶高度,栈顶 height [ 1 ]
出栈,栈空。所以把 height [ 3 ]
入栈。currtent
后移。
然后 current
指向的高度小于栈顶 height [ 3 ]
的高度,height [ 4 ]
入栈。current
后移。
然后 current
指向的高度小于栈顶 height [ 4 ]
的高度,height [ 5 ]
入栈。current
后移。
然后 current 指向的高度大于栈顶 height [ 5 ] 的高度,将栈顶 height [ 5 ] 出栈,然后计算 current 指向的墙和新栈顶 height [ 4 ] 之间的水。计算完之后继续判断 current 的指向和新栈顶的关系。此时 height [ 6 ] 不大于栈顶 height [ 4 ] ,所以将 height [ 6 ] 入栈。current 后移。
然后 current 指向的高度大于栈顶高度,将栈顶 height [ 6 ] 出栈。计算和新的栈顶 height [ 4 ] 组成两个边界中的水。然后判断 current 和新的栈顶 height [ 4 ] 的关系,依旧是大于,所以把 height [ 4 ] 出栈。计算 current 和 新的栈顶 height [ 3 ] 之间的水。然后判断 current 和新的栈顶 height [ 3 ] 的关系,依旧是大于,所以把 height [ 3 ] 出栈,栈空。将 current 指向的 height [ 7 ] 入栈。current 后移。
其实不停的出栈,可以看做是在找与 7 匹配的墙,也就是 3 。
而对于计算 current 指向墙和新的栈顶之间的水,根据图的关系,我们可以直接把这两个墙当做之前解法三的 max_left 和 max_right,然后之前弹出的栈顶当做每次遍历的 height [ i ]。水量就是 Min ( max _ left ,max _ right ) - height [ i ],只不过这里需要乘上两个墙之间的距离。可以看下代码继续理解下。
public int trap6(int[] height) {
int sum = 0;
Stack<Integer> stack = new Stack<>();
int current = 0;
while (current < height.length) {
//如果栈不空并且当前指向的高度大于栈顶高度就一直循环
while (!stack.empty() && height[current] > height[stack.peek()]) {
int h = height[stack.peek()]; //取出要出栈的元素
stack.pop(); //出栈
if (stack.empty()) { // 栈空就出去
break;
}
int distance = current - stack.peek() - 1; //两堵墙之前的距离。
int min = Math.min(height[stack.peek()], height[current]);
sum = sum + distance * (min - h);
}
stack.push(current); //当前指向的墙入栈
current++; //指针后移
}
return sum;
}