欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

详解如何在python中读写和存储matlab的数据文件(*.mat)

程序员文章站 2022-07-07 09:26:12
背景 在做deeplearning过程中,使用caffe的框架,一般使用matlab来处理图片(matlab处理图片相对简单,高效),用python来生成需要的lmdb文...

背景

在做deeplearning过程中,使用caffe的框架,一般使用matlab来处理图片(matlab处理图片相对简单,高效),用python来生成需要的lmdb文件以及做test产生结果。所以某些matlab从图片处理得到的label信息都会以.mat文件供python读取,同时也python产生的结果信息也需要matlab来做进一步的处理(当然也可以使用txt,不嫌麻烦自己处理结构信息)。

介绍

matlab和python间的数据传输一般是基于matlab的文件格式.mat,python中numpy和scipy提供了一些函数,可以很好的对.mat文件的数据进行读写和处理。

在这里numpy作用是提供Array功能映射matlab里面的Matrix,而scipy提供了两个函数loadmat和savemat来读写.mat文件。

下面是一个简单的测试程序,具体的函数用法可以看帮助文档:

import scipy.io as sio 
import matplotlib.pyplot as plt 
import numpy as np 
 
#matlab文件名 
matfn=u'E:/python/测试程序/162250671_162251656_1244.mat' 
data=sio.loadmat(matfn) 
 
plt.close('all') 
xi=data['xi'] 
yi=data['yi'] 
ui=data['ui'] 
vi=data['vi'] 
plt.figure(1) 
plt.quiver( xi[::5,::5],yi[::5,::5],ui[::5,::5],vi[::5,::5]) 
plt.figure(2) 
plt.contourf(xi,yi,ui) 
plt.show()  
sio.savemat('saveddata.mat', {'xi': xi,'yi': yi,'ui': ui,'vi': vi}) 

示例2

import scipy.io as sio
import numpy as np

###下面是讲解python怎么读取.mat文件以及怎么处理得到的结果###
load_fn = 'xxx.mat'
load_data = sio.loadmat(load_fn)
load_matrix = load_data['matrix'] #假设文件中存有字符变量是matrix,例如matlab中save(load_fn, 'matrix');当然可以保存多个save(load_fn, 'matrix_x', 'matrix_y', ...);
load_matrix_row = load_matrix[0] #取了当时matlab中matrix的第一行,python中数组行排列

###下面是讲解python怎么保存.mat文件供matlab程序使用###
save_fn = 'xxx.mat'
save_array = np.array([1,2,3,4])
sio.savemat(save_fn, {'array': save_array}) #和上面的一样,存在了array变量的第一行

save_array_x = np.array([1,2,3,4])
save_array_y = np.array([5,6,7,8])
sio.savemat(save_fn, {'array_x': save_array_x, 'array_x': save_array_x}) #同理,只是存入了两个不同的变量供

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。