欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

hdu5901--数论(1到n的素数个数)模板题

程序员文章站 2022-03-13 09:58:36
...

模板 n最大1e11

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=5e6+2;
bool np[N];
int prime[N],pi[N];
int getprime()
{
    int cnt=0;
    np[0]=np[1]=true;
    pi[0]=pi[1]=0;
    for(int i=2;i<N;++i)
    {
        if(!np[i])
            prime[++cnt]=i;
        pi[i]=cnt;
        for(int j=1;j<=cnt&&i*prime[j]<N;++j)
        {
            np[i*prime[j]]=true;
            if(i%prime[j]==0) break;
        }
    }
    return cnt;
}
const int M=7;
const int PM=2*3*5*7*11*13*17;
int phi[PM+1][M+1],sz[M+1];
void init()
{
    getprime();
    sz[0]=1;
    for(int i=0;i<=PM;++i)
        phi[i][0]=i;
    for(int i=1;i<=M;++i)
    {
        sz[i]=prime[i]*sz[i-1];
        for(int j=1;j<=PM;++j)
            phi[j][i]=phi[j][i-1]-phi[j/prime[i]][i-1];
    }
}
int sqrt2(ll x)
{
    ll r=(ll)sqrt(x-0.1);
    while(r*r<=x) ++r;
    return int(r-1);
}
int sqrt3(ll x)
{
    ll r=(ll)cbrt(x-0.1);
    while(r*r*r<=x) ++r;
    return int(r-1);
}
ll getphi(ll x,int s){
    if(s==0)
        return x;
    if(s<=M)
        return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
    if(x<=prime[s]*prime[s])
        return pi[x]-s+1;
    if(x<=prime[s]*prime[s]*prime[s]&&x<N)
    {
        int s2x=pi[sqrt2(x)];
        ll ans=pi[x]-(s2x+s-2)*(s2x-s+1)/2;
        for(int i=s+1;i<=s2x;++i)
            ans+=pi[x/prime[i]];
        return ans;
    }
    return getphi(x,s-1)-getphi(x/prime[s],s-1);
}
ll getpi(ll x)
{
    if(x<N) return pi[x];
    ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
    for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)];i<=ed;++i)
        ans-=getpi(x/prime[i])-i+1;
    return ans;
}
ll lehmer_pi(ll x)
{
    if(x<N) return pi[x];
    int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
    int b=(int)lehmer_pi(sqrt2(x));
    int c=(int)lehmer_pi(sqrt3(x));
    ll sum=getphi(x,a)+ll(b+a-2)*(b-a+1)/2;
    for(int i=a+1;i<=b;i++)
    {
        ll w=x/prime[i];
        sum-=lehmer_pi(w);
        if(i>c)
            continue;
        ll lim=lehmer_pi(sqrt2(w));
        for(int j=i;j<=lim;j++)
            sum-=lehmer_pi(w/prime[j])-(j-1);
    }
    return sum;
}
int main()
{
    init();
    ll n;
    while(cin>>n)
        cout<<lehmer_pi(n)<<endl;
    return 0;
}