tensorflow构造第一个神经网络
程序员文章站
2022-07-06 22:22:26
...
coding:utf-8
“””
构造第一个神经网络模型
“”“
构造神经网络结构
import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size],mean=0.0,stddev=1.0)) #标准正态分布
biases = tf.Variable(tf.zeros([1,out_size])+0.25)
out1 = tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs = out1
else:
outputs = activation_function(out1)
return outputs
构造数据
x_data = np.linspace(-1,1,500)[:,np.newaxis]
noise = np.random.normal(0.1,0.05,x_data.shape)
y_data = np.square(x_data)-0.25+noise
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
l1 = add_layer(xs,1,10,activation_function = tf.nn.relu)
y_prediction = add_layer(l1,10,1,activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-y_prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(2000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i %50:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
结果: