欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch中LSTM,GRU参数理解

程序员文章站 2022-07-06 17:31:06
...

本文中的RNN泛指LSTM,GRU等等
CNN中和RNN中batchSize的默认位置是不同的。

    CNN中:batchsize的位置是position 0.
    RNN中:batchsize的位置是position 1.

在RNN中输入数据格式:

对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显式的传入隐藏状态。torch.nn.RNN()可以接受一个序列的输入,默认会传入一个全0的隐藏状态,也可以自己申明隐藏状态传入。

输入大小是三维tensor[seq_len,batch_size,input_dim]

    input_dim是输入的维度,比如是128
    batch_size是一次往RNN输入句子的数目,比如是5。
    seq_len是一个句子的最大长度,比如15

所以千万注意,RNN输入的是序列,一次把批次的所有句子都输入了,得到的ouptut和hidden都是这个批次的所有的输出和隐藏状态,维度也是三维。
可以理解为现在一共有batch_size个独立的RNN组件,RNN的输入维度是input_dim,总共输入seq_len个时间步,则每个时间步输入到这个整个RNN模块的维度是[batch_size,input_dim]

# 构造RNN网络,x的维度5,隐层的维度10,网络的层数2
rnn_seq = nn.RNN(5, 10,2)  
# 构造一个输入序列,句长为 6,batch 是 3, 每个单词使用长度是 5的向量表示
x = torch.randn(6, 3, 5)
#out,ht = rnn_seq(x,h0) 
out,ht = rnn_seq(x) #h0可以指定或者不指定

问题1:这里out、ht的size是多少呢?
回答:out: 6 * 3 * 10, ht: 2 * 3 * 10,out的输出维度[seq_len,batch_size,output_dim],ht的维度[num_layers * num_directions, batch, hidden_size],如果是单向单层的RNN那么一个句子只有一个hidden。
问题2:out[-1]和ht[-1]是否相等?
回答:相等,隐藏单元就是输出的最后一个单元,可以想象,每个的输出其实就是那个时间步的隐藏单元

RNN的其他参数

RNN(input_dim ,hidden_dim ,num_layers ,…)
– input_dim 表示输入的特征维度
– hidden_dim 表示输出的特征维度,如果没有特殊变化,相当于out
– num_layers 表示网络的层数
– nonlinearity 表示选用的非线性**函数,默认是 ‘tanh’
– bias 表示是否使用偏置,默认使用
– batch_first 表示输入数据的形式,默认是 False,就是这样形式,(seq, batch, feature),也就是将序列长度放在第一位,batch 放在第二位
– dropout 表示是否在输出层应用 dropout
– bidirectional 表示是否使用双向的 rnn,默认是 False

Pytorch中LSTM,GRU参数理解
LSTM的输出相比于GRU多了一个memory单元

# 输入维度 50,隐层100维,两层
lstm_seq = nn.LSTM(50, 100, num_layers=2)
# 输入序列seq= 10,batch =3,输入维度=50
lstm_input = torch.randn(10, 3, 50)
out, (h, c) = lstm_seq(lstm_input) # 使用默认的全 0 隐藏状态

问题1:out和(h,c)的size各是多少?
回答:out:(10 * 3 * 100),(h,c):都是(2 * 3 * 100)
问题2:out[-1,:,:]和h[-1,:,:]相等吗?
回答: 相等
GRU比较像传统的RNN

gru_seq = nn.GRU(10, 20,2) # x_dim,h_dim,layer_num
gru_input = torch.randn(3, 32, 10) # seq,batch,x_dim
out, h = gru_seq(gru_input)
相关标签: 深度学习