欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

kafka环境搭建和使用(python API)

程序员文章站 2022-07-06 14:15:16
...

引言

上一篇文章了解了kafka的重要组件zookeeper,用来保存broker、consumer等相关信息,做到平滑扩展。这篇文章就实际操作部署下kafka,用几个简单的例子加深对kafka的理解,学会基本使用kafka。

环境搭建

我将会在本地部署一个三台机器的zookeeper集群,和一个2台机器的kafka集群。

zookeeper集群

zookeeper的搭建可以看我的上一篇文章分布式系统中zookeeper实现配置管理+集群管理,按照步骤,一步步可以很容易的搭建3太服务器的zookeeper集群。跟之前一样,我还是在本地的3个端口搭建了3台服务器,地址如下所示:

192.168.0.105:2181
192.168.0.105:2182
192.168.0.105:2183

这三台服务器一会儿会在kafka配置中用到。

kafka集群

第一步. 下载kafka

到kafka官网下载apache kafka,解压到/path/to/kafka目录。

第二步. 修改配置文件
复制/path/to/kafka/config/server.properties,到/path/to/kafka/config/server-1.properties/path/to/kafka/config/server-2.properties

配置文件中修改的差异内容如下所示:
server-1.properties

broker.id=1
listeners=PLAINTEXT://:9093
log.dirs=/tmp/kafka-logs-1
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

server-2.properties

broker.id=2
listeners=PLAINTEXT://:9094
log.dirs=/tmp/kafka-logs-2
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

其中broker.id是broker的唯一标示,集群中的broker标识必须唯一。
listeners是broker监听的地址和端口,advertised.listeners用于和producer、consumer交互,后者未配置会默认使用前者,listeners的完整格式是listeners = listener_name://host_name:port,其中PLAINTEXT是协议,还有一种是SSL,具体还没太搞明白(TODO)。
log.dirs是日志数据的存放目录,也就是producer产生的数据存放的目录。
zookeeper.connect配置是zookeeper的集群,broker启动之后将信息注册到zookeeper集群中。

第三步. 启动服务器

cd /path/to/kafka
bin/kafka-server-start.sh -daemon config/server-1.properties
bin/kafka-server-start.sh -daemon config/server-2.properties

使用jps命令可以看见2个kafka进程,证明启动成功了。

第四步. 创建topic
创建topic一般使用kafka自带的脚本创建:

bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 2 --partitions 10 --topic user-event

其中--zookeeper就是后面就是我们上面配置的zookeeper集群,--replication-factor代表每个分区在集群中复制的份数,后面的值要小于kafka集群中服务器数量,--partitions表示创建主题的分区数量,一般分区越大,性能越好,--topic后边儿就是创建主题的名字,运行成功之后会看到Created topic "user-event".字样,表示创建成功,会在kafka配置的日志目录下创建主题信息,比如下面的:
ll /tmp/kafka-logs-1

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-0
drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-2
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-0
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-1
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-2
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-3
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-4
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-5
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-6
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-7
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-8
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-9

ll /tmp/kafka-logs-2

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-1
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-0
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-1
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-2
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-3
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-4
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-5
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-6
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-7
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-8
drwxr-xr-x  6 ritoyan  wheel  192  6  3 21:26 user-event-9

可以看到两个broker中都创建了主题user-event的10个分区。可能也有人要问了,clock-tick这个主题怎么在broker1中有2个分区,broker2中有1个分区,这个是我之前创建的一个分区,用了下面的命令bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 1 --partitions 3 --topic clock-tick,只有一份日志记录,3个分区,分区会均匀的分布在所有broker上。

至此kafka环境配置好了,西面我们看看如何使用。

基本使用

安装kafka-python,用来操作kafka,pip3 install kafka-python,这里是他的文档,文档写的不错,简洁易懂kafka-python

producer 向broker发送消息

bootstrap_servers是kafka集群地址信息,下面事项主题user-event发送一条消息,send发送消息是异步的,会马上返回,因此我们要通过阻塞的方式等待消息发送成功(或者flush()也可以,flush会阻塞知道所有log都发送成功),否则消息可能会发送失败,但也不会有提示,关于上面这个可以通过删除send之后的语句试试,会发现broker不会收到消息,然后在send后加上time.sleep(10)之后,会看到broker收到消息。

from kafka import KafkaProducer
from kafka.errors import KafkaError

producer = KafkaProducer(
    bootstrap_servers=[
        "localhost:9093",
  "localhost:9094"
  ]
)

future = producer.send("user-event", b'I am rito yan')
try:
    record_metadata = future.get(timeout=10)
    print_r(record_metadata)
except KafkaError as e:
    print(e)

阻塞等待发送成功之后,会看到返回插入记录的信息:
RecordMetadata(topic='user-event', partition=7, topic_partition=TopicPartition(topic='user-event', partition=7), offset=1, timestamp=1528034253757, checksum=None, serialized_key_size=-1, serialized_value_size=13),里面包括了插入log的主题、分区等信息。

格式化发送的信息

创建producer的时候可以通过value_serializer指定格式化函数,比如我们数据是个dict,可以指定格式化函数,将dict转化为byte:

import json

producer = KafkaProducer(
    bootstrap_servers=[
        "localhost:9093",
        "localhost:9094"
    ],
    value_serializer=lambda m: json.dumps(m).encode('ascii')
)

future = producer.send("user-event", {
    "name": "燕睿涛",
    "age": 26,
    "friends": [
        "ritoyan",
        "luluyrt"
    ]
})

这样就可以将格式化之后的信息发送给broker,不用每次发送的时候都自己格式化,真是不要太好用。

consumer 消费数据

创建一个consumer,其中group_id是分组,broker中的每一个数据只能被consumer组中的一个consumer消费。

from kafka import KafkaConsumer

consumer = KafkaConsumer(
    "user-event",
    group_id = "user-event-test",
    bootstrap_servers = [
        "localhost:9093",
        "localhost:9094"
    ]
)
for message in consumer:
    print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
                                          message.offset, message.key,
                                          message.value))

启动之后,进程会一直阻塞在哪里,等broker中有消息的时候就会去消费,启动多个进程,只要保证group_id一致,就可以保证消息只被组内的一个consumer消费,上面的程序会输出:

user-event:8:2: key=None value=b'{"name": "\\u71d5\\u777f\\u6d9b", "age": 26, "friends": ["ritoyan", "luluyrt"]}'

同样,进入的时候有value_serializer,出来的时候对应的也有value_deserializer,消费者可以配置value_deserializer来格式化内容,跟producer对应起来

consumer = KafkaConsumer(
    "user-event",
  group_id = "user-event-test",
  bootstrap_servers = [
        "localhost:9093",
  "localhost:9094"
  ],
  value_deserializer=lambda m: json.loads(m.decode('ascii'))
)

输出内容user-event:8:3: key=None value={'name': '燕睿涛', 'age': 26, 'friends': ['ritoyan', 'luluyrt']}

kafka其他命令

查看分组

我们的consumer可能有很多分组,可以通过西面的命令查看分组信息:

cd /path/to/kafka
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9093,localhost:9094 --list

可以看到我使用中的分组有4个,分别如下所示

clock-tick-test3
user-event-test
clock-tick-test2
clock-tick-test

查看特定分组信息

可以通过bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9093 --group user-event-test --describe,查看分组user-event-test的信息,可以看到西面的信息,包含消费的主题、分区信息,以及consumer在分区中的offset和分区的总offset。(为了格式化显示,删了部分列的部分字母)

TOPIC       PARTITION   CURRENT-OFFSET  LOG-END-OFFSET  LAG CONSUMER-ID HOST    CLIENT-ID
user-event  3   0   0   0   kafka-python-154b2 /127.0.0.1   kafka-python
user-event  0   0   0   0   kafka-python-154b2 /127.0.0.1   kafka-python
user-event  1   1   1   0   kafka-python-154b2 /127.0.0.1   kafka-python
user-event  2   1   1   0   kafka-python-154b2 /127.0.0.1   kafka-python
user-event  4   0   0   0   kafka-python-154b2 /127.0.0.1   kafka-python
user-event  9   1   1   0   kafka-python-78517 /127.0.0.1   kafka-python
user-event  8   4   4   0   kafka-python-78517 /127.0.0.1   kafka-python
user-event  7   2   2   0   kafka-python-78517 /127.0.0.1   kafka-python
user-event  6   1   1   0   kafka-python-78517 /127.0.0.1   kafka-python
user-event  5   0   0   0   kafka-python-78517 /127.0.0.1   kafka-python

结语

至此,kafka的基本使用算是掌握了,以后要是有机会在项目中实践就好了,在实际工程中的各种问题可以更加深刻的理解其中的原理。