欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现三维拟合的方法

程序员文章站 2022-07-06 11:56:39
如下所示: from matplotlib import pyplot as plt import numpy as np from mpl_toolkits...

如下所示:

from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d

fig = plt.figure()
ax = axes3d(fig)

#列出实验数据
point=[[2,3,48],[4,5,50],[5,7,51],[8,9,55],[9,12,56]]
plt.xlabel("x1")
plt.ylabel("x2")

#表示矩阵中的值
isum = 0.0
x1sum = 0.0
x2sum = 0.0
x1_2sum = 0.0
x1x2sum = 0.0
x2_2sum = 0.0
ysum = 0.0
x1ysum = 0.0
x2ysum = 0.0

#在图中显示各点的位置
for i in range(0,len(point)):

 x1i=point[i][0]
 x2i=point[i][1]
 yi=point[i][2]
 ax.scatter(x1i, x2i, yi, color="red")
 show_point = "["+ str(x1i) +","+ str(x2i)+","+str(yi) + "]"
 ax.text(x1i,x2i,yi,show_point)

 isum = isum+1
 x1sum = x1sum+x1i
 x2sum = x2sum+x2i
 x1_2sum = x1_2sum+x1i**2
 x1x2sum = x1x2sum+x1i*x2i
 x2_2sum = x2_2sum+x2i**2
 ysum = ysum+yi
 x1ysum = x1ysum+x1i*yi
 x2ysum = x2ysum+x2i*yi

# 进行矩阵运算
# _mat1 设为 mat1 的逆矩阵
m1=[[isum,x1sum,x2sum],[x1sum,x1_2sum,x1x2sum],[x2sum,x1x2sum,x2_2sum]]
mat1 = np.matrix(m1)
m2=[[ysum],[x1ysum],[x2ysum]]
mat2 = np.matrix(m2)
_mat1 =mat1.geti()
mat3 = _mat1*mat2

# 用list来提取矩阵数据
m3=mat3.tolist()
a0 = m3[0][0]
a1 = m3[1][0]
a2 = m3[2][0]

# 绘制回归线
x1 = np.linspace(0,9)
x2 = np.linspace(0,12)
y = a0+a1*x1+a2*x2
ax.plot(x1,x2,y)
show_line = "y="+str(a0)+"+"+str(a1)+"x1"+"+"+str(a2)+"x2"
plt.title(show_line)
plt.show()

以上这篇python实现三维拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。