欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

卷积神经网络(CNN)实战

程序员文章站 2022-07-06 11:07:04
...

一、本文基于Tensorflow采用CNN做的手写字体识别,话不多说上代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import tensorflow as tf


LEARNING_RATE = 1e-4
TRAINING_ITERATIONS = 2500
DROPOUT = 0.5
BATCH_SIZE = 50
VALIDATION_SIZE = 2000
IMAGINE_TO_DISPLAY = 10

from tensorflow import keras
(x_train,y_train),(x_test,y_test) = keras.datasets.mnist.load_data()
x_train = np.multiply(x_train,1.0/255.0).astype(np.float32)
x_test = np.multiply(x_test,1.0/255.0).astype(np.float32)
def dense_to_one_hot(labels_dense,num_classes):
    num_labels = labels_dense.shape[0]
    index_offset = np.arange(num_labels) * num_classes
    labels_one_hot = np.zeros((num_labels,num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot
y_train = dense_to_one_hot(y_train,10).astype(np.float32)
y_test = dense_to_one_hot(y_test,10).astype(np.float32)
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)
def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')


x_train = x_train.reshape([-1,784])
x_test = x_test.reshape([-1,784])

# input and output
x = tf.placeholder('float', shape=[None, 784])
y_ = tf.placeholder('float', shape=[None, 10])
#第一个卷积层计算
#宽5 高5 channel为1 用多少个filter来计算,这里是32
W_conv1 = weight_variable([5, 5, 1, 32])
#执行卷积后得到了32个图,所以需要32个偏置
b_conv1 = bias_variable([32])

# (40000,784) => (40000,28,28,1)
image = tf.reshape(x, [-1,28 , 28,1])
#print (image.get_shape()) # =>(40000,28,28,1)

h_conv1 = tf.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)


W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

# (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#print (y.get_shape()) # => (40000, 10)

# cost function
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# optimisation function
train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy)
# evaluation
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
# prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1

epochs_completed = 0
index_in_epoch = 0
num_examples = x_train.shape[0]

# serve data by batches
def next_batch(batch_size):

    global x_train
    global y_train
    global index_in_epoch
    global epochs_completed

    start = index_in_epoch
    index_in_epoch += batch_size

    # when all trainig data have been already used, it is reorder randomly
    if index_in_epoch > num_examples:
        # finished epoch
        epochs_completed += 1
        # shuffle the data
        perm = np.arange(num_examples)
        np.random.shuffle(perm)
        x_train = x_train[perm]
        y_train = y_train[perm]
        # start next epoch
        start = 0
        index_in_epoch = batch_size
        assert batch_size <= num_examples
    end = index_in_epoch
    return x_train[start:end], y_train[start:end]

# start TensorFlow session
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()

sess.run(init)

# visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = []

display_step=1

for i in range(TRAINING_ITERATIONS):

    #get new batch
    batch_xs, batch_ys = next_batch(BATCH_SIZE)

    # check progress on every 1st,2nd,...,10th,20th,...,100th... step
    if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS:
        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
        if(VALIDATION_SIZE):
            validation_accuracy = accuracy.eval(feed_dict={ x: x_test[0:BATCH_SIZE],
                                                            y_: y_test[0:BATCH_SIZE],
                                                            keep_prob: 1.0})
            print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i))

            validation_accuracies.append(validation_accuracy)

        else:
            print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
        train_accuracies.append(train_accuracy)
        x_range.append(i)

        # increase display_step
        if i%(display_step*10) == 0 and i:
            display_step *= 10
    # train on batch
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT})

卷积神经网络(CNN)实战
卷积神经网络(CNN)实战

相关标签: 卷积