卷积神经网络(CNN)实战
程序员文章站
2022-07-06 11:07:04
...
一、本文基于Tensorflow采用CNN做的手写字体识别,话不多说上代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import tensorflow as tf
LEARNING_RATE = 1e-4
TRAINING_ITERATIONS = 2500
DROPOUT = 0.5
BATCH_SIZE = 50
VALIDATION_SIZE = 2000
IMAGINE_TO_DISPLAY = 10
from tensorflow import keras
(x_train,y_train),(x_test,y_test) = keras.datasets.mnist.load_data()
x_train = np.multiply(x_train,1.0/255.0).astype(np.float32)
x_test = np.multiply(x_test,1.0/255.0).astype(np.float32)
def dense_to_one_hot(labels_dense,num_classes):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels,num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
y_train = dense_to_one_hot(y_train,10).astype(np.float32)
y_test = dense_to_one_hot(y_test,10).astype(np.float32)
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
x_train = x_train.reshape([-1,784])
x_test = x_test.reshape([-1,784])
# input and output
x = tf.placeholder('float', shape=[None, 784])
y_ = tf.placeholder('float', shape=[None, 10])
#第一个卷积层计算
#宽5 高5 channel为1 用多少个filter来计算,这里是32
W_conv1 = weight_variable([5, 5, 1, 32])
#执行卷积后得到了32个图,所以需要32个偏置
b_conv1 = bias_variable([32])
# (40000,784) => (40000,28,28,1)
image = tf.reshape(x, [-1,28 , 28,1])
#print (image.get_shape()) # =>(40000,28,28,1)
h_conv1 = tf.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
# (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
#print (y.get_shape()) # => (40000, 10)
# cost function
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# optimisation function
train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy)
# evaluation
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
# prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
epochs_completed = 0
index_in_epoch = 0
num_examples = x_train.shape[0]
# serve data by batches
def next_batch(batch_size):
global x_train
global y_train
global index_in_epoch
global epochs_completed
start = index_in_epoch
index_in_epoch += batch_size
# when all trainig data have been already used, it is reorder randomly
if index_in_epoch > num_examples:
# finished epoch
epochs_completed += 1
# shuffle the data
perm = np.arange(num_examples)
np.random.shuffle(perm)
x_train = x_train[perm]
y_train = y_train[perm]
# start next epoch
start = 0
index_in_epoch = batch_size
assert batch_size <= num_examples
end = index_in_epoch
return x_train[start:end], y_train[start:end]
# start TensorFlow session
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()
sess.run(init)
# visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = []
display_step=1
for i in range(TRAINING_ITERATIONS):
#get new batch
batch_xs, batch_ys = next_batch(BATCH_SIZE)
# check progress on every 1st,2nd,...,10th,20th,...,100th... step
if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
if(VALIDATION_SIZE):
validation_accuracy = accuracy.eval(feed_dict={ x: x_test[0:BATCH_SIZE],
y_: y_test[0:BATCH_SIZE],
keep_prob: 1.0})
print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i))
validation_accuracies.append(validation_accuracy)
else:
print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
train_accuracies.append(train_accuracy)
x_range.append(i)
# increase display_step
if i%(display_step*10) == 0 and i:
display_step *= 10
# train on batch
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT})