欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow conv2d原理及实践

程序员文章站 2022-07-06 11:07:28
...


tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

官方教程说明:

给定四维的inputfilter tensor,计算一个二维卷积

Args:
  • input: A Tensor. type必须是以下几种类型之一: halffloat32float64.
  • filter: A Tensor. type和input必须相同
  • strides: A list of ints.一维,长度4, 在input上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶
  • padding: A string from: "SAME", "VALID". padding 算法的类型
  • use_cudnn_on_gpu: An optional bool. Defaults to True.
  • data_format: An optional string from: "NHWC", "NCHW", 默认为"NHWC"
    指定输入输出数据格式,默认格式为"NHWC", 数据按这样的顺序存储:
    [batch, in_height, in_width, in_channels]
    也可以用这种方式:"NCHW", 数据按这样的顺序存储:
    [batch, in_channels, in_height, in_width]
  • name: 操作名,可选.
Returns:

Tensor. type与input相同

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels]

conv2d实际上执行了以下操作:

  1. 将filter转为二维矩阵,shape为
    [filter_height * filter_width * in_channels, output_channels].
  2. 从input tensor中提取image patches,每个patch是一个virtual tensor,shape[batch, out_height, out_width, filter_height * filter_width * in_channels].
  3. 将每个filter矩阵和image patch向量相乘

具体来讲,当data_format为NHWC时:

output[b, i, j, k] =
    sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                    filter[di, dj, q, k]

input 中的每个patch都作用于filter,每个patch都能获得其他patch对filter的训练
需要满足strides[0] = strides[3] = 1. 大多数水平步长和垂直步长相同的情况下:strides = [1, stride, stride, 1].

下面举例来进行说明

在最基本的例子中,没有padding和stride = 1。让我们假设你的inputkernel有: 

TensorFlow conv2d原理及实践

当您的内核您将收到以下输出:TensorFlow conv2d原理及实践,它按以下方式计算:

  • 14 = 4 * 1 + 3 * 0 + 1 * 1 + 2 * 2 + 1 * 1 + 0 * 0 + 1 * 0 + 2 * 0 + 4 * 1
  • 6 = 3 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 0 * 1 + 1 * 0 + 2 * 0 + 4 * 0 + 1 * 1
  • 6 = 2 * 1 + 1 * 0 + 0 * 1 + 1 * 2 + 2 * 1 + 4 * 0 + 3 * 0 + 1 * 0 + 0 * 1
  • 12 = 1 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 4 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + 2 * 1

TF的conv2d函数批量计算卷积,并使用稍微不同的格式。对于一个输入,它是[batch, in_height, in_width, in_channels]内核的[filter_height, filter_width, in_channels, out_channels]。所以我们需要以正确的格式提供数据:

TensorFlow conv2d原理及实践
import tensorflow as tf
k = tf.constant([
    [1, 0, 1],
    [2, 1, 0],
    [0, 0, 1]
], dtype=tf.float32, name='k')
i = tf.constant([
    [4, 3, 1, 0],
    [2, 1, 0, 1],
    [1, 2, 4, 1],
    [3, 1, 0, 2]
], dtype=tf.float32, name='i')
kernel = tf.reshape(k, [3, 3, 1, 1], name='kernel')
image  = tf.reshape(i, [1, 4, 4, 1], name='image')
TensorFlow conv2d原理及实践

之后,卷积用下式计算:

res = tf.squeeze(tf.nn.conv2d(image, kernel, [1, 1, 1, 1], "VALID"))
# VALID means no padding
with tf.Session() as sess:
   print sess.run(res)

并将相当于我们手工计算的,输出结果:

[[ 14. 6.]
[ 6. 12.]]

 

附上一张图:

TensorFlow conv2d原理及实践

 

区别SAME和VALID

VALID

input = tf.Variable(tf.random_normal([1,5,5,5]))  

filter = tf.Variable(tf.random_normal([3,3,5,1]))  

op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')  

输出图形:

.....  
.xxx.  
.xxx.  
.xxx.  
..... 

 

SAME

input = tf.Variable(tf.random_normal([1,5,5,5]))  
filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  
op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')  

输出图形:

xxxxx  
xxxxx  
xxxxx  
xxxxx  
xxxxx  

 

参考链接

相关标签: tensorflow 卷积