欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Nodejs中crypto模块的安全知识讲解

程序员文章站 2022-07-06 10:58:38
互联网时代,网络上的数据量每天都在以惊人的速度增长。同时,各类网络安全问题层出不穷。在信息安全重要性日益凸显的今天,作为一名开发者,需要加强对安全的认识,并通过技术手段增强...

互联网时代,网络上的数据量每天都在以惊人的速度增长。同时,各类网络安全问题层出不穷。在信息安全重要性日益凸显的今天,作为一名开发者,需要加强对安全的认识,并通过技术手段增强服务的安全性。

crypto模块是nodejs的核心模块之一,它提供了安全相关的功能,如摘要运算、加密、电子签名等。很多初学者对着长长的api列表,不知如何上手,因此它背后涉及了大量安全领域的知识。

本文重点讲解api背后的理论知识,主要包括如下内容:

摘要(hash)、基于摘要的消息验证码(hmac)

对称加密、非对称加密、电子签名

分组加密模式

摘要(hash)

摘要(digest):将长度不固定的消息作为输入,通过运行hash函数,生成固定长度的输出,这段输出就叫做摘要。通常用来验证消息完整、未被篡改。

摘要运算是不可逆的。也就是说,输入固定的情况下,产生固定的输出。但知道输出的情况下,无法反推出输入。

伪代码如下。

digest = hash(message)

常见的摘要算法 与 对应的输出位数如下:

md5:128位

sha-1:160位

sha256 :256位

sha512:512位

nodejs中的例子:

var crypto = require('crypto');
var md5 = crypto.createhash('md5');
var message = 'hello';
var digest = md5.update(message, 'utf8').digest('hex'); 
console.log(digest);
// 输出如下:注意这里是16进制
// 5d41402abc4b2a76b9719d911017c592

备注:在各类文章或文献中,摘要、hash、散列 这几个词经常会混用,导致不少初学者看了一脸懵逼,其实大部分时候指的都是一回事,记住上面对摘要的定义就好了。

mac、hmac

mac(message authentication code):消息认证码,用以保证数据的完整性。运算结果取决于消息本身、秘钥。

mac可以有多种不同的实现方式,比如hmac。

hmac(hash-based message authentication code):可以粗略地理解为带秘钥的hash函数。

nodejs例子如下:

const crypto = require('crypto');
// 参数一:摘要函数
// 参数二:秘钥
let hmac = crypto.createhmac('md5', '123456');
let ret = hmac.update('hello').digest('hex');
console.log(ret);
// 9c699d7af73a49247a239cb0dd2f8139

对称加密、非对称加密

加密/解密:给定明文,通过一定的算法,产生加密后的密文,这个过程叫加密。反过来就是解密。

encryptedtext = encrypt( plaintext )
plaintext = decrypt( encryptedtext )

秘钥:为了进一步增强加/解密算法的安全性,在加/解密的过程中引入了秘钥。秘钥可以视为加/解密算法的参数,在已知密文的情况下,如果不知道解密所用的秘钥,则无法将密文解开。

encryptedtext = encrypt(plaintext, encryptkey)
plaintext = decrypt(encryptedtext, decryptkey)

根据加密、解密所用的秘钥是否相同,可以将加密算法分为对称加密、非对称加密。

1、对称加密

加密、解密所用的秘钥是相同的,即encryptkey === decryptkey。

常见的对称加密算法:des、3des、aes、blowfish、rc5、idea。

加、解密伪代码:

encryptedtext = encrypt(plaintext, key); // 加密
plaintext = decrypt(encryptedtext, key); // 解密

2、非对称加密

又称公开秘钥加密。加密、解密所用的秘钥是不同的,即encryptkey !== decryptkey。

加密秘钥公开,称为公钥。解密秘钥保密,称为秘钥。

常见的非对称加密算法:rsa、dsa、elgamal。

加、解密伪代码:

encryptedtext = encrypt(plaintext, publickey); // 加密
plaintext = decrypt(encryptedtext, privitekey); // 解密

3、对比与应用

除了秘钥的差异,还有运算速度上的差异。通常来说:

对称加密速度要快于非对称加密。

非对称加密通常用于加密短文本,对称加密通常用于加密长文本。

两者可以结合起来使用,比如https协议,可以在握手阶段,通过rsa来交换生成对称秘钥。在之后的通讯阶段,可以使用对称加密算法对数据进行加密,秘钥则是握手阶段生成的。

备注:对称秘钥交换不一定通过rsa,还可以通过类似dh来完成,这里不展开。

数字签名

从签名大致可以猜到数字签名的用途。主要作用如下:

确认信息来源于特定的主体。

确认信息完整、未被篡改。

为了达到上述目的,需要有两个过程:

发送方:生成签名。

接收方:验证签名。

1、发送方生成签名

计算原始信息的摘要。

通过私钥对摘要进行签名,得到电子签名。

将原始信息、电子签名,发送给接收方。

附:签名伪代码

digest = hash(message); // 计算摘要
digitalsignature = sign(digest, privitekey); // 计算数字签名

2、接收方验证签名

通过公钥解开电子签名,得到摘要d1。(如果解不开,信息来源主体校验失败)

计算原始信息的摘要d2。

对比d1、d2,如果d1等于d2,说明原始信息完整、未被篡改。

附:签名验证伪代码

digest1 = verify(digitalsignature, publickey); // 获取摘要
digest2 = hash(message); // 计算原始信息的摘要
digest1 === digest2 // 验证是否相等

3、对比非对称加密

由于rsa算法的特殊性,加密/解密、签名/验证 看上去特别像,很多同学都很容易混淆。先记住下面结论,后面有时间再详细介绍。

加密/解密:公钥加密,私钥解密。

签名/验证:私钥签名,公钥验证。

分组加密模式、填充、初始化向量

常见的对称加密算法,如aes、des都采用了分组加密模式。这其中,有三个关键的概念需要掌握:模式、填充、初始化向量。

搞清楚这三点,才会知道crypto模块对称加密api的参数代表什么含义,出了错知道如何去排查。

1、分组加密模式

所谓的分组加密,就是将(较长的)明文拆分成固定长度的块,然后对拆分的块按照特定的模式进行加密。

常见的分组加密模式有:ecb(不安全)、cbc(最常用)、cfb、ofb、ctr等。

以最简单的ecb为例,先将消息拆分成等分的模块,然后利用秘钥进行加密。

Nodejs中crypto模块的安全知识讲解

后面假设每个块的长度为128位

2、初始化向量:iv

为了增强算法的安全性,部分分组加密模式(cfb、ofb、ctr)中引入了初始化向量(iv),使得加密的结果随机化。也就是说,对于同一段明文,iv不同,加密的结果不同。

以cbc为例,每一个数据块,都与前一个加密块进行亦或运算后,再进行加密。对于第一个数据块,则是与iv进行亦或。

iv的大小跟数据块的大小有关(128位),跟秘钥的长度无关。

Nodejs中crypto模块的安全知识讲解

3、填充:padding

分组加密模式需要对长度固定的块进行加密。分组拆分完后,最后一个数据块长度可能小于128位,此时需要进行填充以满足长度要求。

填充方式有多重。常见的填充方式有pkcs7。

假设分组长度为k字节,最后一个分组长度为k-last,可以看到:

不管明文长度是多少,加密之前都会会对明文进行填充 (不然解密函数无法区分最后一个分组是否被填充了,因为存在最后一个分组长度刚好等于k的情况)

如果最后一个分组长度等于k-last === k,那么填充内容为一个完整的分组 k k k ... k (k个字节)

如果最后一个分组长度小于k-last < k,那么填充内容为 k-last mod k

01 -- if lth mod k = k-1
02 02 -- if lth mod k = k-2
.
.
.
k k ... k k -- if lth mod k = 0

概括来说

分组加密:先将明文切分成固定长度的块(128位),再进行加密。

分组加密的几种模式:ecb(不安全)、cbc(最常用)、cfb、ofb、ctr。

填充(padding):部分加密模式,当最后一个块的长度小于128位时,需要通过特定的方式进行填充。(ecb、cbc需要填充,cfb、ofb、ctr不需要填充)

初始化向量(iv):部分加密模式(cfb、ofb、ctr)会将 明文块 与 前一个密文块进行亦或操作。对于第一个明文块,不存在前一个密文块,因此需要提供初始化向量iv(把iv当做第一个明文块 之前的 密文块)。此外,iv也可以让加密结果随机化。

写在后面

crypto模块涉及的安全知识较多,篇幅所限,这里没办法一一展开。为了讲解方便,部分内容可能不够严谨,如有错漏敬请指出。

如果大家在学习的时候还有其他疑问可以在下方的留言区域讨论,感谢你对的支持。