欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

计算数据集均值方差

程序员文章站 2022-07-05 20:50:09
参考:https://blog.csdn.net/weixin_41765699/article/details/100118660对于数据集获取简单进行修改import osimport cv2import numpy as npdef searchDirFile(rootDir, list_, path_, endswith_): for dir_or_file in os.listdir(rootDir): filePath = os.path.join....

参考:

https://blog.csdn.net/weixin_41765699/article/details/100118660

对于数据集获取简单进行修改 

import os
import cv2
import numpy as np

def searchDirFile(rootDir, list_, path_, endswith_):
    for dir_or_file in os.listdir(rootDir):
        filePath = os.path.join(rootDir, dir_or_file)
        if os.path.isfile(filePath):
            if os.path.basename(filePath).endswith(endswith_):
                temp = filePath.split('/')[-2]
                list_.append(temp)
                path_.append(filePath)
            else:
                continue
        elif os.path.isdir(filePath):
            searchDirFile(filePath, list_, path_, endswith_)
        else:
            print('not file and dir '+os.path.basename(filePath))

path = "/home/mydata"
namelist = []
pathlist = []
endswith = 'Texture_8Bit.png'
searchDirFile(path, namelist, pathlist, endswith)

R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathlist)):
    filename = pathlist[idx]
    img = cv2.imread(filename) / 255.0
    R_channel = R_channel + np.sum(img[:, :, 0])
    G_channel = G_channel + np.sum(img[:, :, 1])
    B_channel = B_channel + np.sum(img[:, :, 2])

# 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
num = len(pathlist) * 2064 * 1544
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num

print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathlist)):
    filename = pathlist[idx]
    img = cv2.imread(filename) / 255.0
    R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
    G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
    B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)

R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)

print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

 

上面必须图片大小一样,速度很慢

如果图像大小不一样,且要求速度较快:

https://blog.csdn.net/PanYHHH/article/details/107896526

https://zhuanlan.zhihu.com/p/275742390

通过pytorch 每次计算每张图的均值方差,直接计入总和,然后除以数据集数目

本文地址:https://blog.csdn.net/baidu_40840693/article/details/110870752

相关标签: 深度学习