欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python线程中同步锁详解

程序员文章站 2022-07-05 18:52:31
在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用pyt...

在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock Rlock Semaphore Event Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题

Lock & RLock:互斥锁 用来保证多线程访问共享变量的问题
Semaphore对象:Lock互斥锁的加强版,可以被多个线程同时拥有,而Lock只能被某一个线程同时拥有。
Event对象: 它是线程间通信的方式,相当于信号,一个线程可以给另外一个线程发送信号后让其执行操作。
Condition对象:其可以在某些事件触发或者达到特定的条件后才处理数据

1、Lock(互斥锁)

请求锁定 — 进入锁定池等待 — 获取锁 — 已锁定 — 释放锁

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:
Lock()

实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

if mutex.acquire():
 counter += 1
 print "I am %s, set counter:%s" % (self.name, counter)
  mutex.release()

2、RLock(可重入锁)

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:
RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。

3、Semaphore(共享对象访问)

咱们再聊聊Semaphore ,说实话Semaphore是我最晚使用的同步锁,以前类似的实现,是我用Rlock实现的,相对来说有些绕,毕竟Rlock 是需要成对的锁定和开锁的》。。。

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

直接上代码,我们把semaphore控制为3,也就是说,同时有3个线程可以用这个锁,剩下的线程也之只能是阻塞等待了…

#coding:utf-8
#blog xiaorui.cc
import time
import threading

semaphore = threading.Semaphore(3)

def func():
 if semaphore.acquire():
  for i in range(3):
   time.sleep(1)
   print (threading.currentThread().getName() + '获取锁')
  semaphore.release()
  print (threading.currentThread().getName() + ' 释放锁')


for i in range(5):
 t1 = threading.Thread(target=func)
 t1.start()

4、Event(线程间通信)

Event内部包含了一个标志位,初始的时候为false。
可以使用使用set()来将其设置为true;
或者使用clear()将其从新设置为false;
可以使用is_set()来检查标志位的状态;

另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。

import threading
import time

class MyThread(threading.Thread):
 def __init__(self, signal):
  threading.Thread.__init__(self)
  self.singal = signal

 def run(self):
  print "I am %s,I will sleep ..."%self.name
  self.singal.wait()
  print "I am %s, I awake..." %self.name

if __name__ == "__main__":
 singal = threading.Event()
 for t in range(0, 3):
  thread = MyThread(singal)
  thread.start()

 print "main thread sleep 3 seconds... "
 time.sleep(3)

 singal.set()

5、Condition(线程同步)

可以把Condition理解为一把高级的琐,它提供了比Lock, RLock更高级的功能,允许我们能够控制复杂的线程同步问题。threadiong.Condition在内部维护一个琐对象(默认是RLock),可以在创建Condigtion对象的时候把琐对象作为参数传入。Condition也提供了acquire, release方法,其含义与琐的acquire, release方法一致,其实它只是简单的调用内部琐对象的对应的方法而已。Condition还提供了如下方法(特别要注意:这些方法只有在占用琐(acquire)之后才能调用,否则将会报RuntimeError异常。):

Condition.wait([timeout]):

wait方法释放内部所占用的琐,同时线程被挂起,直至接收到通知被唤醒或超时(如果提供了timeout参数的话)。当线程被唤醒并重新占有琐的时候,程序才会继续执行下去。

Condition.notify():

唤醒一个挂起的线程(如果存在挂起的线程)。注意:notify()方法不会释放所占用的琐。

Condition.notify_all()
Condition.notifyAll()

唤醒所有挂起的线程(如果存在挂起的线程)。注意:这些方法不会释放所占用的琐。

对于Condition有个例子,大家可以观摩下。

from threading import Thread, Condition
import time
import random

queue = []
MAX_NUM = 10
condition = Condition()

class ProducerThread(Thread):
 def run(self):
  nums = range(5)
  global queue
  while True:
   condition.acquire()
   if len(queue) == MAX_NUM:
    print "Queue full, producer is waiting"
    condition.wait()
    print "Space in queue, Consumer notified the producer"
   num = random.choice(nums)
   queue.append(num)
   print "Produced", num
   condition.notify()
   condition.release()
   time.sleep(random.random())


class ConsumerThread(Thread):
 def run(self):
  global queue
  while True:
   condition.acquire()
   if not queue:
    print "Nothing in queue, consumer is waiting"
    condition.wait()
    print "Producer added something to queue and notified the consumer"
   num = queue.pop(0)
   print "Consumed", num
   condition.notify()
   condition.release()
   time.sleep(random.random())


ProducerThread().start()
ConsumerThread().start()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。