排序算法(三)堆排序原理与实现
程序员文章站
2022-03-12 23:04:13
...
堆排序实际上是利用堆的性质来进行排序的,要知道堆排序的原理我们首先一定要知道什么是堆。
堆的定义:
堆实际上是一棵完全二叉树。
堆满足两个性质:
1、堆的每一个父节点都大于(或小于)其子节点;
2、堆的每个左子树和右子树也是一个堆。
堆的分类:
堆分为两类:
1、最大堆(大顶堆):堆的每个父节点都大于其孩子节点;
2、最小堆(小顶堆):堆的每个父节点都小于其孩子节点;
堆的存储:
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如下图所示:
堆排序:
由上面的介绍我们可以看出堆的第一个元素要么是最大值(大顶堆),要么是最小值(小顶堆),这样在排序的时候(假设共n个节点),直接将第一个元素和最后一个元素进行交换,然后从第一个元素开始进行向下调整至第n-1个元素。所以,如果需要升序,就建一个大堆,需要降序,就建一个小堆。
堆排序的步骤分为三步:
1、建堆(升序建大堆,降序建小堆);
2、交换数据;
3、向下调整。
假设我们现在要对数组arr[]={8,5,0,3,7,1,2}进行排序(降序):
首先要先建小堆:
堆建好了下来就要开始排序了:
现在这个数组就已经是有序的了。
下面给出代码:
void AdjustDown(int arr[], int i, int n)
{
int j = i * 2 + 1;//子节点
while (j<n)
{
if (j+1<n && arr[j] > arr[j + 1])//子节点中找较小的
{
j++;
}
if (arr[i] < arr[j])
{
break;
}
swap(arr[i],arr[j]);
i = j;
j = i * 2 + 1;
}
}
void MakeHeap(int arr[], int n)//建堆
{
int i = 0;
for (i = n / 2 - 1; i >= 0; i--)//((n-1)*2)+1 =n/2-1
{
AdjustDown(arr, i, n);
}
}
void HeapSort(int arr[],int len)
{
int i = 0;
MakeHeap(arr, len);
for (i = len - 1; i >= 0; i--)
{
swap(arr[i], arr[0]);
AdjustDown(arr, 0, i);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
上一篇: 手把手教你使用Angular CDK Portal创建动态内容
下一篇: html如何转换为pdf