欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数值方法完全主元素消元法解线性方程组

程序员文章站 2022-07-05 16:58:19
...

数值方法完全主元素消元法解线性方程组
原题排序成这样就行了
数值方法完全主元素消元法解线性方程组
本程序是排成这样,懒得改了,差不多就行,嘿嘿

数值方法完全主元素消元法解线性方程组

import java.util.Scanner;

public class Gauss {
    static final int MAXN = 20;
    static double a[][] = new double[MAXN][MAXN];
    static double b[][] = new double[2][MAXN];//我想多了,这里用一维数组就好
    static int num;
    static int x_max;
    static int y_max;

    public static void main(String[] args) {
        System.out.println("输入未知数个数:");
        Scanner sc = new Scanner(System.in);
        num = sc.nextInt();
        System.out.println("输入用矩阵表示的线性方程组:");
        for (int i = 0; i < num; i++) {//输入方程组
            for (int j = 0; j <= num; j++) {
                a[i][j] = sc.nextDouble();
            }
        }

        for (int i = 0; i < num; i++) {//初始化计数数列
            b[0][i] = i;
            b[1][i] = 0;
        }
        for (int j = 0; j < num; j++) {
            a[num][j] = j;
        }
        for (int j = 0; j < num - 1; j++) {
            findMax(j);
        
           sort1(j);

            findMax(j);
       
            sort2(j);

            dengjia(j);


        }

        for (int i = num - 1; i >= 0; i--) {
            jiefangcheng(i);
        }
        for (int j = 0; j < num; j++) {
            System.out.println("x" + (a[num][j] + 1) + "=" + b[1][j]);
        }
    }

    static void sort1(int jj) {//行排序
        for (int j = jj; j < num - 1; j++) {

            for (int k = jj; k < num - 1; k++) {

                if (Math.abs(a[k][x_max]) < Math.abs(a[k + 1][x_max])) {
                    for (int i = jj; i <= num; i++) {
                        double temp = a[k][i];
                        a[k][i] = a[k + 1][i];
                        a[k + 1][i] = temp;
                    }
                }


            }
        }
    }

    static void sort2(int jj) {//列排序
        for (int j = jj; j < num - 1; j++) {

            for (int k = jj; k < num - 1; k++) {

                if (Math.abs(a[y_max][k]) < Math.abs(a[y_max][k+1])) {
                    for (int i = 0; i <= num; i++) {
                        double temp = a[i][k];
                        a[i][k] = a[i][k + 1];
                        a[i][k + 1] = temp;
                    }
                }


            }
        }
    }

    static void findMax(int jj) {
        double max = 0;
        for (int i = jj; i < num; i++) {
            for (int j = jj; j < num; j++) {
                if (Math.abs(a[i][j]) > Math.abs(max)) {
                    max = a[i][j];
                    y_max = i;
                    x_max = j;
                }
            }
        }
    }

    static void dengjia(int jj) {//把原矩阵转化成三角形的
        for (int i = jj + 1; i < num; i++) {
            double k = a[i][jj] / a[jj][jj];
            for (int j = jj; j <= num; j++) {
                a[i][j] = a[i][j] - a[jj][j] * k;
            }
        }

    }

    static void jiefangcheng(int ii) {//解方程
        for (int j = ii + 1; j < num; j++) {
            a[ii][num] -= a[ii][j] * b[1][j];
        }
        b[1][ii] = a[ii][num] / a[ii][ii];

    }

}

数值方法完全主元素消元法解线性方程组

相关标签: 数值计算方法