欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pandas知识点(基本功能)

程序员文章站 2022-07-05 14:41:17
1.重新索引 如果reindex会根据新索引重新排序,不存在的则引入缺省: In [3]: obj = Series([4.5,7.2,-5.3,3.6], index=["d","b","a","c"]) In [4]: obj Out[4]: d 4.5 b 7.2 a -5.3 c 3.6 d ......

1.重新索引

如果reindex会根据新索引重新排序,不存在的则引入缺省:
in [3]: obj = series([4.5,7.2,-5.3,3.6], index=["d","b","a","c"])
in [4]: obj
out[4]:
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64
in [6]: obj2 = obj.reindex(["a","b","c","d","e"])
in [7]: obj2
out[7]:
a   -5.3
b    7.2
c    3.6
d    4.5
e    nan
dtype: float64

 

ffill可以实现前向值填充:
in [8]: obj3 = series(["blue","purple","yellow"], index=[0,2,4])
in [9]: obj3.reindex(range(6), method="ffill")
out[9]:
0      blue
1      blue
2    purple
3    purple
4    yellow
5    yellow
dtype: object

 

2.丢弃指定轴上的项
drop方法返回在指定轴上删除了指定值的新对象:
in [12]: obj = series(np.arange(5.), index=["a","b","c","d","e"])
in [13]: new_obj = obj.drop("c")
in [14]: new_obj
out[14]:
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64

dataframe可以删除任意轴上的索引值

 
3.索引,选取和过滤
series的索引可以不止是整数:
in [4]: obj = series(np.arange(4.), index=["a","b","c","d"])out[6]:
a    0.0
b    1.0
dtype: float64
in [7]: obj[obj<2]
out[7]:
a    0.0
b    1.0
dtype: float64

 

series切片与普通的python切片不一样,末端也是包含的:
in [8]: obj["b":"c"]
out[8]:
b    1.0
c    2.0
dtype: float64

 

dataframe进行索引:
in [10]: data
out[10]:
          one  two  three  four
ohio        0    1      2     3
colorado    4    5      6     7
utah        8    9     10    11
new york   12   13     14    15
in [11]: data['two']
out[11]:
ohio         1
colorado     5
utah         9
new york    13
name: two, dtype: int32
in [12]: data[:2]
out[12]:
          one  two  three  four
ohio        0    1      2     3
colorado    4    5      6     7

 

布尔型dataframe进行索引:
in [13]: data > 5
out[13]:
            one    two  three   four
ohio      false  false  false  false
colorado  false  false   true   true
utah       true   true   true   true
new york   true   true   true   true

 

利用ix可以选取行和列的子集:
in [18]: data.ix['colorado',['two','three']]
out[18]:
two      5
three    6
name: colorado, dtype: int32
in [19]: data.ix[['colorado','utah'],[3,0,1]]
out[19]:
          four  one  two
colorado     7    4    5
utah        11    8    9

 

4.算数运算和数据对齐
对不同索引的对象进行算数运算,如果存在不同的索引,则结果的索引取其并集:
in [20]: s1 = series([7.3,-2.5,3.4,1.5],index=['a','c','d','e'])
in [21]: s2 = series([-2.1, 3.6, -1.5, 4, 3.1],index=['a','c','e','f','g'])
in [22]: s1+s2
out[22]:
a    5.2
c    1.1
d    nan
e    0.0
f    nan
g    nan
dtype: float64

 

对于dataframe,对齐操作会同时发生在行和列上:
in [26]: df1
out[26]:
          b     d     e
utah    0.0   1.0   2.0
ohio    3.0   4.0   5.0
texas   6.0   7.0   8.0
oregon  9.0  10.0  11.0
in [27]: df2
out[27]:
            b    c    d
ohio      0.0  1.0  2.0
texas     3.0  4.0  5.0
colorado  6.0  7.0  8.0
in [28]: df1+df2
out[28]:
            b   c     d   e
colorado  nan nan   nan nan
ohio      3.0 nan   6.0 nan
oregon    nan nan   nan nan
texas     9.0 nan  12.0 nan
utah      nan nan   nan nan

 

使用add方法相加:
in [30]: df2.add(df1,fill_value=0)
out[30]:
            b    c     d     e
colorado  6.0  7.0   8.0   nan
ohio      3.0  1.0   6.0   5.0
oregon    9.0  nan  10.0  11.0
texas     9.0  4.0  12.0   8.0
utah      0.0  nan   1.0   2.0

 

5.dataframe和series之间的运算:
计算二维数组和某一行的差:
in [31]: arr = np.arange(12.).reshape((3,4))
in [32]: arr
out[32]:
array([[ 0.,  1.,  2.,  3.],
       [ 4.,  5.,  6.,  7.],
       [ 8.,  9., 10., 11.]])
in [33]: arr - arr[1]
out[33]:
array([[-4., -4., -4., -4.],
       [ 0.,  0.,  0.,  0.],
       [ 4.,  4.,  4.,  4.]])

 

dataframe和series之间的运算:
in [35]: frame = dataframe(np.arange(12.).reshape((4,3)),columns=list('bde'),index=['utah','ohio','texas','oregon'])
in [39]: series = frame.iloc[0]
in [40]: frame
out[40]:
          b     d     e
utah    0.0   1.0   2.0
ohio    3.0   4.0   5.0
texas   6.0   7.0   8.0
oregon  9.0  10.0  11.0
in [41]: series
out[41]:
b    0.0
d    1.0
e    2.0
name: utah, dtype: float64
in [43]: frame - series
out[43]:
          b    d    e
utah    0.0  0.0  0.0
ohio    3.0  3.0  3.0
texas   6.0  6.0  6.0
oregon  9.0  9.0  9.0

 

如果某个索引值找不到,则与运算的两个对象会被重新索引以形成并集:
in [45]: frame + series2
out[45]:
          b   d     e   f
utah    0.0 nan   3.0 nan
ohio    3.0 nan   6.0 nan
texas   6.0 nan   9.0 nan
oregon  9.0 nan  12.0 nan

 

匹配列并在列上广播:
in [46]: series3 = frame['d']
in [47]: frame.sub(series3, axis=0)
out[47]:
          b    d    e
utah   -1.0  0.0  1.0
ohio   -1.0  0.0  1.0
texas  -1.0  0.0  1.0
oregon -1.0  0.0  1.0

 

6.函数应用和映射
numpy的ufuncs也可用于操作pandas对象:
in [49]: frame = dataframe(np.random.randn(4,3), columns=list('bde'),index=['utah','ohio','texas','oregon'])
in [50]: frame
out[50]:
               b         d         e
utah    0.913051 -1.289725 -0.590573
ohio    1.417612 -1.835357 -0.010755
texas   0.328839 -0.121878 -1.209583
oregon  1.315330 -1.026557 -1.777427
 
in [51]: np.abs(frame)
out[51]:
               b         d         e
utah    0.913051  1.289725  0.590573
ohio    1.417612  1.835357  0.010755
texas   0.328839  0.121878  1.209583
oregon  1.315330  1.026557  1.777427
dataframe的apply方法可以实现将函数应用到由各行或列形成的一维数组上:
in [52]: f = lambda x:x.max() - x.min()
in [53]: frame.apply(f)
out[53]:
b    1.088773
d    1.713479
e    1.766671
dtype: float64
in [54]: frame.apply(f, axis=1)
out[54]:
utah      2.202776
ohio      3.252969
texas     1.538421
oregon    3.092757
dtype: float64

 

7.排序和排名
sort_index方法可以返回一个已排序的对象
in [57]: obj = series(range(4), index=['d','a','b','c'])
in [58]: obj
out[58]:
d    0
a    1
b    2
c    3
dtype: int64
in [59]: obj.sort_index
out[59]:
<bound method series.sort_index of d    0
a    1
b    2
c    3
dtype: int64>
in [62]: frame.sort_index()
out[62]:
               b         d         e
ohio    1.417612 -1.835357 -0.010755
oregon  1.315330 -1.026557 -1.777427
texas   0.328839 -0.121878 -1.209583
utah    0.913051 -1.289725 -0.590573
in [63]: frame.sort_index(axis=1)
out[63]:
               b         d         e
utah    0.913051 -1.289725 -0.590573
ohio    1.417612 -1.835357 -0.010755
texas   0.328839 -0.121878 -1.209583
oregon  1.315330 -1.026557 -1.777427

 

倒序查看:
in [65]: frame.sort_index(axis=1,ascending=false)
out[65]:
               e         d         b
utah   -0.590573 -1.289725  0.913051
ohio   -0.010755 -1.835357  1.417612
texas  -1.209583 -0.121878  0.328839
oregon -1.777427 -1.026557  1.315330

 

按某一列的值进行排序:
in [67]: frame.sort_values(by='b')
out[67]:
               b         d         e
texas   0.328839 -0.121878 -1.209583
utah    0.913051 -1.289725 -0.590573
oregon  1.315330 -1.026557 -1.777427
ohio    1.417612 -1.835357 -0.010755

 

排名(rank)与排序类似,它会设置一个排名值,并且可以根据某种规则破坏平级关系
in [70]: obj
out[70]:
0    7
1   -5
2    7
3    4
4    2
5    0
6    4
dtype: int64
in [71]: obj.rank()
out[71]:
0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

 

根据值在原数据中出现的顺序给出排名
in [72]: obj.rank(method='first')
out[72]:
0    6.0
1    1.0
2    7.0
3    4.0
4    3.0
5    2.0
6    5.0
dtype: float64

 

8.带有重复值的轴索引
使用is_unique查看值是否唯一
in [73]: obj = series(range(5),index=['a','a','b','b','c'])
in [74]: obj
out[74]:
a    0
a    1
b    2
b    3
c    4
dtype: int64
in [75]: obj.index.is_unique
out[75]: false

 

对重复索引选取数据:
in [76]: obj['a']
out[76]:
a    0
a    1
dtype: int64

dataframe也是同样的道理