欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python高级-生成器(17)

程序员文章站 2022-07-05 14:28:28
1. 什么是⽣成器 通过列表⽣成式,我们可以直接创建⼀个列表。但是,受到内存限制,列表容量肯定是有限的。⽽且,创建⼀个包含100万个元素的列表,不仅占⽤很⼤的存储空间,如果我们仅仅需要访问前⾯⼏个元素,那后⾯绝⼤多数元素占⽤的空间都⽩⽩浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可 ......

1. 什么是⽣成器

通过列表⽣成式,我们可以直接创建⼀个列表。但是,受到内存限制,列表容量肯定是有限的。⽽且,创建⼀个包含100万个元素的列表,不仅占⽤很⼤的存储空间,如果我们仅仅需要访问前⾯⼏个元素,那后⾯绝⼤多数元素占⽤的空间都⽩⽩浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从⽽节省⼤量的空间。在python中,这种⼀边循环⼀边计算的机制,称为⽣成器:generator。

 

2. 创建⽣成器⽅法1

要创建⼀个⽣成器,有很多种⽅法。第⼀种⽅法很简单,只要把⼀个列表⽣成式的 [ ] 改成 ( )

列表生成式

l = [2*x for x in range(1,10)]
print(l)

运行结果为:[2, 4, 6, 8, 10, 12, 14, 16, 18]

生成器

g = (2*x for x in range(1,10))
p

运行结果为:<generator object <genexpr> at 0x00000111152fc408>

创建 l 和 g 的区别仅在于最外层的 [ ] 和 ( ) , l 是⼀个列表,⽽ g 是⼀个⽣成器。我们可以直接打印出l的每⼀个元素,但我们怎么打印出g的每⼀个元素呢?如果要⼀个⼀个打印出来,可以通过 next() 函数获得⽣成器的下⼀个返回:

g = (2*x for x in range(1,10))
print(g)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))

运行结果为:2、4、6、8、10、12

g = (2*x for x in range(1,10))
print(g)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))

运行结果为:

<generator object <genexpr> at 0x0000022cccc8c408>
2
4
6
8
10
12
14
16
18
traceback (most recent call last):
  file "c:\users\se7en_hou\desktop\a.py", line 12, in <module>
    print(next(g))
stopiteration

注意:

  • ⽣成器保存的是算法,每次调⽤ next(g) ,就计算出 g 的下⼀个元素的值,直到计算到最后⼀个元素,没有更多的元素时,抛出 stopiteration 的异常。
  • 当然,这种不断调⽤ next() 实在是太变态了,正确的⽅法是使⽤ for 循环,因为⽣成器也是可迭代对象。所以,我们创建了⼀个⽣成器后,基本上永远不会调⽤ next() ,⽽是通过 for 循环来迭代它,并且不需要关⼼stopiteration 异常.

 

3. 创建⽣成器方法2

generator⾮常强⼤。如果推算的算法⽐较复杂,⽤类似列表⽣成式的 for 循环⽆法实现的时候,还可以⽤函数来实现。

⽐如,著名的斐波拉契数列(fibonacci),除第⼀个和第⼆个数外,任意⼀个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, …

斐波拉契数列⽤列表⽣成式写不出来,但是,⽤函数把它打印出来却很容易

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        print(b)
        a,b = b,a+b
        n+=1
    return "done"

fib(5)

运行结果为:1、 1、 2、 3、 5

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第⼀个元素开始,推算出后续任意的元素,这种逻辑其实⾮常类似
generator。也就是说,上⾯的函数和generator仅⼀步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
print(next(f))
print(next(f))
print(next(f))
print(next(f))
print(next(f))
print(next(f))

运行结果为:

1
1
2
3
5
traceback (most recent call last):
  file "c:\users\se7en_hou\desktop\demo.py", line 16, in <module>
    print(next(f))
stopiteration: done

在上⾯fib 的例⼦,我们在循环过程中不断调⽤ yield ,就会不断中断。当然要给循环设置⼀个条件来退出循环,不然就会产⽣⼀个⽆限数列出来。同样的,把函数改成generator后,我们基本上从来不会⽤ next() 来获取下⼀个返回值,⽽是直接使⽤ for 循环来迭代:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

for n in fib(5):
    print(n)

运行结果为:

1
1
2
3
5

但是⽤for循环调⽤generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获stopiteration错误,返回值包含在stopiteration的value中:

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
while true:
    try:
        x = next(f)
        print("value=%d"%x)
    except stopiteration as e:
        print("生成器返回值=%s"%e.value)
        break

运行结果为:

value=1
value=1
value=2
value=3
value=5
生成器返回值=done

 

4、_ _next_ _()方法和next()一样

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        yield b
        a,b = b,a+b
        n+=1
    return "done"

f = fib(5)
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())
print(f.__next__())

运行结果为:

1traceback (most recent call last):

1
2
3
5
  file "c:\users\se7en_hou\desktop\demo.py", line 16, in <module>
    print(f.__next__())
stopiteration: done

 

5.、send()

def fib(times):
    n=0
    a,b = 0,1
    while n<times:
        temp = yield b
        print(temp)
        a,b = b,a+b
        n+=1

f = fib(5)
print(f.__next__())
print(f.send("se7en_hou"))
print(f.send("se7en"))
print(next(f))
print(f.__next__())

运行结果为:

1
se7en_hou
1
se7en
2
none
3
none
5

通过上面的例子可以看出使用send()函数可以给生成器生成对象的时候传递参数。

总结

  • ⽣成器是这样⼀个函数,它记住上⼀次返回时在函数体中的位置。对⽣成器函数的第⼆次(或第 n 次)调⽤跳转⾄该函数中间,⽽上次调⽤的所有局部变量都保持不变。
  • ⽣成器不仅“记住”了它数据状态;⽣成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。

⽣成器的特点:

  • 1. 节约内存
  • 2. 迭代到下⼀次的调⽤时,所使⽤的参数都是第⼀次所保留下的,即是说,在整个所有函数调⽤的参数都是第⼀次所调⽤时保留的,⽽不是新创建的