ThreadLocal 工作原理
1.ThreadLocal 介绍
首先,它是一个数据结构,有点像HashMap,可以保存"key : value"键值对,但是一个ThreadLocal只能保存一个,并且各个线程的数据互不干扰,它是一个以ThreadLocal对象为键、任意对象为值的存储结构。可以通过set(T)方法设置一个值,在当前线程下以get()方法获取到原先设置的值。
ThreadLocal<String> threadLocal = new ThreadLocal();
threadLocal.set("threadLocal data");
String name = threadLocal.get();
应用场景:在多线程环境下,如何防止自己的变量被其它线程篡改,就可以用到ThreadLocal。
多线程下的ThreadLocal
2.ThreadLocal 原理
原理:每个Thread维护一个ThreadLocalMap映射表,这个映射表的key是ThreadLocal实例本身,value是真正需要存储的Object。
ThreadLocalMap从名字上看,可以猜到它也是一个类似HashMap的数据结构,但是在ThreadLocal中,并没实现Map接口。
在ThreadLoalMap中,也是初始化一个大小16的Entry数组,Entry对象用来保存每一个key-value键值对,只不过这里的key永远都是ThreadLocal对象,是不是很神奇,通过ThreadLocal对象的set方法,结果把ThreadLocal对象自己当做key,放进了ThreadLoalMap中。
缺陷:ThreadLocal可能导致内存泄漏,原因:当使用ThreadLocal保存一个value时,会在ThreadLocalMap中的数组插入一个Entry对象,按理说key-value都应该以强引用保存在Entry对象中,但在ThreadLocalMap的实现中,key被保存到了WeakReference对象中。这就导致了一个问题,ThreadLocal在没有外部强引用时,发生GC时会被回收,如果创建ThreadLocal的线程一直持续运行,那么这个Entry对象中的value就有可能一直得不到回收,发生内存泄露。【简单的说就是本该回收的对象一直都没有被回收。】
如何避免:只要清除ThreadLocalMap中key为null的Entry对象,这样对应的value就没有GC Roots可达了,下次GC的时候就可以被回收,当然如果调用remove方法,肯定会删除对应的Entry对象。如果使用ThreadLocal的set方法之后,没有显示的调用remove方法,就有可能发生内存泄露,所以养成良好的编程习惯十分重要,使用完ThreadLocal之后,记得调用remove方法。
3.ThreadLocalMap
threadlocalmap.table 保存的数据, 类型是 Entry[], Entry就是 threadLocal 和要保存的对象的封装. 用数组的意思是因为可能会有多个threadLocal来存放不同类型的对象的,但是他们都将放到你当前线程的ThreadLocalMap里,所以要用数组来存。
这里需要注意的是,ThreadLoalMap的Entry是继承WeakReference,和HashMap很大的区别是,Entry中没有next字段,所以就不存在链表的情况了。
没有链表结构,那发生hash冲突了怎么办?
先看看ThreadLoalMap中插入一个key-value的实现
private void set(ThreadLocal<?> key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
每个ThreadLocal对象都有一个hash值threadLocalHashCode
,每初始化一个ThreadLocal对象,hash值就增加一个固定的大小0x61c88647
。
/**
* The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
在插入过程中,根据ThreadLocal对象的hash值,定位到table中的位置i,过程如下:
1、如果当前位置是空的,那么正好,就初始化一个Entry对象放在位置i上;
2、不巧,位置i已经有Entry对象了,如果这个Entry对象的key正好是即将设置的key,那么重新设置Entry中的value;
3、很不巧,位置i的Entry对象,和即将设置的key没关系,那么只能找下一个空位置;
这样的话,在get的时候,也会根据ThreadLocal对象的hash值,定位到table中的位置,然后判断该位置Entry对象中的key是否和get的key一致,如果不一致,就判断下一个位置
可以发现,set和get如果冲突严重的话,效率很低,因为ThreadLoalMap是Thread的一个属性,所以即使在自己的代码中控制了设置的元素个数,但还是不能控制其它代码的行为。
本文地址:https://blog.csdn.net/jb_home/article/details/111991714