欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Elasticsearch(二)

程序员文章站 2022-07-05 07:50:31
...

Elasticsearch(二)

一. analysis与analyzer

​ analysis,文本分析是将全文本转换为一系列单词的过程,也叫分词。analysis是通过analyzer(分词器)来实现的,可以使用Elasticsearch内置的分词器,也可以自己去定制一些分词器。除了在数据写入的是词条进行转换,那么在查询的时候也需要使用相同的分析器对语句进行分析。

​ anaylzer是由三部分组成,例如有

Hello a World, the world is beautifu

1. Character Filter: 将文本中html标签剔除掉。
2. Tokenizer: 按照规则进行分词,在英文中按照空格分词。
3. Token Filter: 去掉stop world(停顿词,a, an, the, is),然后转换小写。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Qo4tX983-1580444315063)(images2/analysis.png)]

1.1 内置的分词器

分词器名称 处理过程
Standard Analyzer 默认的分词器,按词切分,小写处理
Simple Analyzer 按照非字母切分(符号被过滤),小写处理
Stop Analyzer 小写处理,停用词过滤(the, a, this)
Whitespace Analyzer 按照空格切分,不转小写
Keyword Analyzer 不分词,直接将输入当做输出
Pattern Analyzer 正则表达式,默认是\W+(非字符串分隔)

1.2 内置分词器示例

A. Standard Analyzer

GET _analyze
{
  "analyzer": "standard",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

B. Simple Analyzer

GET _analyze
{
  "analyzer": "simple",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

C. Stop Analyzer

GET _analyze
{
  "analyzer": "stop",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

D. Whitespace Analyzer

GET _analyze
{
  "analyzer": "whitespace",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

E. Keyword Analyzer

GET _analyze
{
  "analyzer": "keyword",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

F. Pattern Analyzer

GET _analyze
{
  "analyzer": "pattern",
  "text": "2 Running quick brown-foxes leap over lazy dog in the summer evening"
}

1.3 中文分词

​ 中文分词在所有的搜索引擎中都是一个很大的难点,中文的句子应该是切分成一个个的词,一句中文,在不同的上下文中,其实是有不同的理解,例如下面这句话:

这个苹果,不大好吃/这个苹果,不大,好吃
1.3.1 IK分词器

IK分词器支持自定义词库,支持热更新分词字典,地址为 https://github.com/medcl/elasticsearch-analysis-ik

elasticsearch-plugin.bat install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.3.0/elasticsearch-analysis-ik-6.3.0.zip

安装步骤:

  1. 下载zip包,下载路径为:https://github.com/medcl/elasticsearch-analysis-ik/releases
  2. 在Elasticsearch的plugins目录下创建名为 analysis-ik 的目录,将下载好的zip包解压在该目录下
  3. 在dos命令行进入Elasticsearch的bin目录下,执行 elasticsearch-plugin.bat list 即可查看到该插件

IK分词插件对应的分词器有以下几种:

  • ik_smart
  • ik_max_word
1.3.2 HanLP

安装步骤如下:

  1. 下载ZIP包,下载路径为:https://pan.baidu.com/s/1mFPNJXgiTPzZeqEjH_zifw#list/path=%2F,密码i0o7
  2. 在Elasticsearch的plugins目录下创建名为 analysis-hanlp 的目录,将下载好的zip包解压在该目录下.
  3. 下载词库,地址为:https://github.com/hankcs/HanLP/releases
  4. 将analyzer-hanlp目录下的data目录删掉,然后将词库解压到anayler-hanlp目录下

HanLP对应的分词器如下:

  • hanlp,默认的分词
  • hanlp_standard,标准分词
  • hanlp_index,索引分词
  • hanlp_nlp,nlp分词
  • hanlp_n_short,N-最短路分词
  • hanlp_dijkstra,最短路分词
  • hanlp_speed,极速词典分词
1.3.3 pinyin分词器

安装步骤:

  1. 下载ZIP包,下载路径为:https://github.com/medcl/elasticsearch-analysis-pinyin/releases
  2. 在Elasticsearch的plugins目录下创建名为 analyzer-pinyin 的目录,将下载好的zip包解压在该目录下.

1.4 中文分词演示

ik_smart

GET _analyze
{
  "analyzer": "ik_smart",
  "text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}

hanlp

GET _analyze
{
  "analyzer": "hanlp",
  "text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}

hanlp_standard

GET _analyze
{
  "analyzer": "hanlp_standard",
  "text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}

hanlp_speed

GET _analyze
{
  "analyzer": "hanlp_speed",
  "text": ["剑桥分析公司多位高管对卧底记者说,他们确保了唐纳德·特朗普在总统大选中获胜"]
}

1.5 分词的实际应用

​ 在如上列举了很多的分词器,那么在实际中该如何应用?

1.5.1 设置mapping

​ 要想使用分词器,先要指定我们想要对那个字段使用何种分词,如下所示:

PUT customers
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "hanlp_standard"
      }
    }
  }
}
1.5.2 插入数据
POST customers/_bulk
{"index":{}}
{"content":"如不能登录,请在百端登录百度首页,点击【登录遇到问题】,进行找回密码操作"}
{"index":{}}
{"content":"网盘客户端访问隐藏空间需要输入密码方可进入。"}
{"index":{}}
{"content":"剑桥的网盘不好用"}
1.5.3 查询
GET customers/_search
{
  "query": {
    "match": {
      "content": "密码"
    }
  }
}

1.6 拼音分词器

​ 在查询的过程中我们可能需要使用拼音来进行查询,在中文分词器中我们介绍过 pinyin 分词器,那么在实际的工作中该如何使用呢?

1.6.1 设置settings
PUT /medcl 
{
    "settings" : {
        "analysis" : {
            "analyzer" : {
                "pinyin_analyzer" : {
                    "tokenizer" : "my_pinyin"
                 }
            },
            "tokenizer" : {
                "my_pinyin" : {
                    "type" : "pinyin",
                    "keep_separate_first_letter" : false,
                    "keep_full_pinyin" : true,
                    "keep_original" : true,
                    "limit_first_letter_length" : 16,
                    "lowercase" : true,
                    "remove_duplicated_term" : true
                }
            }
        }
    }
}

如上所示,我们基于现有的拼音分词器定制了一个名为 pinyin_analyzer 这样一个分词器。可用的参数可以参照:https://github.com/medcl/elasticsearch-analysis-pinyin

1.6.2 设置mapping
PUT medcl/_mapping
{
        "properties": {
            "name": {
                "type": "keyword",
                "fields": {
                    "pinyin": {
                        "type": "text",
                        "analyzer": "pinyin_analyzer",
                        "boost": 10
                    }
                }
            }
        }
}
1.6.3 数据的插入
POST medcl/_bulk
{"index":{}}
{"name": "刘德华"}
{"index":{}}
{"name": "张学友"}
{"index":{}}
{"name": "四大天王"}
{"index":{}}
{"name": "柳岩"}
{"index":{}}
{"name": "angel baby"}
1.6.4 查询
GET medcl/_search
{
  "query": {
    "match": {
      "name.pinyin": "ldh"
    }
  }
}

1.7 中文、拼音混合查找

1.7.1 设置settings
PUT goods
{
  "settings": {
    "analysis": {
      "analyzer": {
        "hanlp_standard_pinyin":{
          "type": "custom",
          "tokenizer": "hanlp_standard",
          "filter": ["my_pinyin"]
        }
      },
      "filter": {
        "my_pinyin": {
          "type" : "pinyin",
          "keep_separate_first_letter" : false,
          "keep_full_pinyin" : true,
          "keep_original" : true,
          "limit_first_letter_length" : 16,
          "lowercase" : true,
          "remove_duplicated_term" : true
        }
      }
    }
  }
}
1.7.2 mappings设置
PUT goods/_mapping
{"properties": {
    "content": {
      "type": "text",
      "analyzer": "hanlp_standard_pinyin"
    }
  }
}
1.7.3 添加数据
POST goods/_bulk
{"index":{}}
{"content":"如不能登录,请在百端登录百度首页,点击【登录遇到问题】,进行找回密码操作"}
{"index":{}}
{"content":"网盘客户端访问隐藏空间需要输入密码方可进入。"}
{"index":{}}
{"content":"剑桥的网盘不好用"}
1.7.4 查询
GET goods/_search
{
  "query": {
    "match": {
      "content": "caozuo"
    }
  },
  "highlight": {
    "pre_tags": "<em>",
    "post_tags": "</em>",
    "fields": {
      "content": {}
    }
  }
}

二. spring boot与Elasticsearch的整合

2.1 添加依赖

<dependency>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

2.2 配置

spring:
  elasticsearch:
    rest:
      uris: http://localhost:9200

2.3 获取ElasticsearchTemplate

@Configuration
public class ElasticsearchConfig extends ElasticsearchConfigurationSupport {

    @Bean
    public Client elasticsearchClient() throws UnknownHostException {
        Settings settings = Settings.builder().put("cluster.name", "my-application").build();
        TransportClient client = new PreBuiltTransportClient(settings);
        client.addTransportAddress(new TransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        return client;
    }

    @Bean(name = {"elasticsearchOperations", "elasticsearchTemplate"})
    public ElasticsearchTemplate elasticsearchTemplate() throws UnknownHostException {
        return new ElasticsearchTemplate(elasticsearchClient(), entityMapper());
    }

    // use the ElasticsearchEntityMapper
    @Bean
    @Override
    public EntityMapper entityMapper() {
        ElasticsearchEntityMapper entityMapper = new ElasticsearchEntityMapper(elasticsearchMappingContext(),
                new DefaultConversionService());
        entityMapper.setConversions(elasticsearchCustomConversions());
        return entityMapper;
    }
}

2.4 POJO类的定义

@Document(indexName = "movies", type = "_doc")
public class Movie {
    private String id;
    private String title;
    private Integer year;
    private List<String> genre;
    // setters and getters
}

2.5 查询

A. 分页查询

// 分页查询
@RequestMapping("/page")
public Object pageQuery(
    @RequestParam(required = false, defaultValue = "10") Integer size,
    @RequestParam(required = false, defaultValue = "1") Integer page) {
    SearchQuery searchQuery = new NativeSearchQueryBuilder()
        .withPageable(PageRequest.of(page, size))
        .build();

    List<Movie> movies = elasticsearchTemplate
        .queryForList(searchQuery, Movie.class);

    return movies;
}

B. range查询

// 单条件范围查询, 查询电影的上映日期在2016年到2018年间的所有电影
@RequestMapping("/range")
public Object rangeQuery() {
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
				.withQuery(new RangeQueryBuilder("year").from(2016).to(2018))
				.build();

	List<Movie> movies = elasticsearchTemplate
				.queryForList(searchQuery, Movie.class);

	return movies;
}

C. match查询

// 单条件查询只要包含其中一个字段
@RequestMapping("/match")
public Object singleCriteriaQuery(String searchText) {
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
			.withQuery(new MatchQueryBuilder("title", searchText))
			.build();

	List<Movie> movies = elasticsearchTemplate
			.queryForList(searchQuery, Movie.class);

	return movies;
}

D. 多条件分页查询

@RequestMapping("/match/multiple")
    public Object multiplePageQuery(
            @RequestParam(required = true) String searchText,
            @RequestParam(required = false, defaultValue = "10") Integer size,
            @RequestParam(required = false, defaultValue = "1") Integer page) {
        SearchQuery searchQuery = new NativeSearchQueryBuilder()
            .withQuery(
                  new BoolQueryBuilder()
                        .must(new MatchQueryBuilder("title", searchText))
                        .must(new RangeQueryBuilder("year").from(2016).to(2018))
                ).withPageable(PageRequest.of(page, size))
                .build();

        List<Movie> movies = elasticsearchTemplate
            .queryForList(searchQuery, Movie.class);

        return movies;
    }

E. 多条件或者查询

// 多条件并且分页查询
    @RequestMapping("/match/or/multiple")
    public Object multipleOrQuery(@RequestParam(required = true) String searchText) {
        SearchQuery searchQuery = new NativeSearchQueryBuilder()
            .withQuery(
                  new BoolQueryBuilder()
                        .should(new MatchQueryBuilder("title", searchText))
                        .should(new RangeQueryBuilder("year").from(2016).to(2018))
                ).build();

        List<Movie> movies = elasticsearchTemplate
            	.queryForList(searchQuery, Movie.class);

        return movies;
    }

F. 精准匹配一个单词,且查询就一个单词

//其中包含有某个给定单词,必须是一个词
@RequestMapping("/term")
public Object termQuery(@RequestParam(required = true) String searchText) {
    SearchQuery searchQuery = new NativeSearchQueryBuilder()
        .withQuery(new TermQueryBuilder("title", searchText)).build();

    List<Movie> movies = elasticsearchTemplate.queryForList(searchQuery, Movie.class);

    return movies;
}

精准匹配多个单词

//其中包含有某个几个单词
@RequestMapping("/terms")
public Object termsQuery(@RequestParam(required = true) String searchText) {
    SearchQuery searchQuery = new NativeSearchQueryBuilder()
        .withQuery(new TermsQueryBuilder("title", searchText.split("\\s+"))).build();

    List<Movie> movies = elasticsearchTemplate.queryForList(searchQuery, Movie.class);

    return movies;
}

G. 短语匹配

@RequestMapping("/phrase")
public Object phraseQuery(@RequestParam(required = true) String searchText) {
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
			.withQuery(new MatchPhraseQueryBuilder("title", searchText))
			.build();

	List<Movie> movies = elasticsearchTemplate
			.queryForList(searchQuery, Movie.class);

	return movies;
}

H. 只查询部分列

@RequestMapping("/source")
public Object sourceQuery(@RequestParam(required = true) String searchText) {
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
		.withSourceFilter(new FetchSourceFilter(
               new String[]{"title", "year", "id"}, new String[]{}))
		.withQuery(new MatchPhraseQueryBuilder("title", searchText))
		.build();

	List<Movie> movies = elasticsearchTemplate.queryForList(searchQuery, Movie.class);

	return movies;
}

I. 多字段匹配

@RequestMapping("/multiple/field")
public Object allTermsQuery(@RequestParam(required = true) String searchText) {
	SearchQuery searchQuery = new NativeSearchQueryBuilder()
		.withQuery(new MultiMatchQueryBuilder(searchText, "title", "genre")
                   .type(MultiMatchQueryBuilder.Type.MOST_FIELDS))
		.build();

	List<Movie> movies = elasticsearchTemplate.queryForList(searchQuery, Movie.class);

	return movies;
}

J. 多单词同时包含

// 多单词同时包含
@RequestMapping("/also/include")
public Object alsoInclude(@RequestParam(required = true) String searchText) {
    SearchQuery searchQuery = new NativeSearchQueryBuilder()
        .withQuery(new QueryStringQueryBuilder(searchText)
                   .field("title").defaultOperator(Operator.AND))
        .build();

    List<Movie> movies = elasticsearchTemplate.queryForList(searchQuery, Movie.class);

    return movies;
}

三. logstash导入mysql数据

input {
  jdbc {
    jdbc_driver_class => "com.mysql.jdbc.Driver"
    jdbc_connection_string => "jdbc:mysql://localhost:3306/es?useSSL=false&serverTimezone=UTC"
    jdbc_user => es
    jdbc_password => "123456"
    #启用追踪,如果为true,则需要指定tracking_column
    use_column_value => false
    #指定追踪的字段,
    tracking_column => "id"
    #追踪字段的类型,目前只有数字(numeric)和时间类型(timestamp),默认是数字类型
    tracking_column_type => "numeric"
    #记录最后一次运行的结果
    record_last_run => true
    #上面运行结果的保存位置
    last_run_metadata_path => "mysql-position.txt"
    statement => "SELECT * FROM news where tags is not null"
    #表示每天的 17:57分执行
    schedule => " 0 57 17 * * *"
  }
}

filter {
  mutate {
    split => { "tags" => ","}
  }
}
output {
  elasticsearch {
    document_id => "%{id}"
    document_type => "_doc"
    index => "news"
    hosts => ["http://localhost:9200"]
  }
  stdout{
    codec => rubydebug
  }
}

四. 搜索案例

4.1 自定义analyzer

PUT news
{
  "settings": {
    "analysis": {
      "analyzer": {
        "hanlp_standard_pinyin":{
          "type": "custom",
          "tokenizer": "hanlp_standard",
          "filter": ["my_pinyin"]
        }
      },
      "filter": {
        "my_pinyin": {
          "type" : "pinyin",
          "keep_separate_first_letter" : false,
          "keep_full_pinyin" : true,
          "keep_original" : true,
          "limit_first_letter_length" : 16,
          "lowercase" : true,
          "remove_duplicated_term" : true
        }
      }
    }
  }
}

4.2 定义mappings

PUT news/_mapping
{
  "dynamic": false,
  "properties": {
    "id": {
      "type": "long"
    },
    "title": {
      "type": "text",
      "analyzer": "hanlp_standard"
    },
    "content": {
      "type": "text",
      "analyzer": "hanlp_standard"
    },
    "tags": {
      "type": "completion",
      "analyzer": "hanlp_standard",
      "fields": {
        "tag_pinyin": {
          "type": "completion",
          "analyzer": "hanlp_standard_pinyin"
        }
      }
    }
  }
}

4.3 导入mysql的数据集

D:\logstash-datas\bin>logstash.bat -f ../config/logstash-mysql.conf

脚本参照第三章,数据库的脚本为news.sql

附录:

  1. 设置mappings的时候,可以指定 “dynamic”: false,意思是如果mappings中有些字段并没有指定,那么在数据导入的时候,该字段的数据会存入到es中,但是不会进行分词。
  2. 在使用suggestion的时候,“skip_duplicates”: true,表示的意思是如果出现相同的建议,那么只会保留一个。
相关标签: Java