欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TreeMap分析(上)

程序员文章站 2022-07-04 23:19:08
因为TreeMap的相关知识较多,故TreeMap的分析将会分成三篇文章来写,望大家谅解。 本篇文章先给大家介绍一下红黑树基本概念,并分析一下在红黑树中查找某个结点的相关源码实现。 TreeMap是啥 从TreeMap的类名上就能知道它的底层存储结构其实是红黑树。首先简单介绍一下红黑树的相关知识,以 ......

因为TreeMap的相关知识较多,故TreeMap的分析将会分成三篇文章来写,望大家谅解。

本篇文章先给大家介绍一下红黑树基本概念,并分析一下在红黑树中查找某个结点的相关源码实现。

 

 

TreeMap是啥

从TreeMap的类名上就能知道它的底层存储结构其实是红黑树。首先简单介绍一下红黑树的相关知识,以便理解后续内容。

什么是红黑树?先放一张红黑树的示意图看看:

TreeMap分析(上)

注:图片出处为 博客园 —— 五月的仓颉

 

简单解释一下树的相关术语的含义:

1.根结点(即0026结点):整个树结构图中最上面的一个结点,其他所有的结点都是由该结点延伸出去的。

2.父结点:在树的上下结构中,有连接关系并处于上方的结点。比如0026是0017和0041的父结点,0017是0012和0021的父结点等等。

3.子结点:在树的上下结构中,有连接关系并处于下方的结点。比如0017是0026的左子结点,0041是0026的右子结点;0030是0041的左子结点,0047是0041的右子结点。

 并且左子节点是小于父结点的,而右子节点一般是大于父结点的。比如0012比0017小,而0010比0012小;同样0041比0026大,并且0047也比0041大。

4.兄弟结点:属于同一个父结点的结点互相称为兄弟结点。比如0017和0041同属于0026的子结点,则0017和0041就是兄弟节点。

5.叶子结点:没有任何子结点的结点称为叶子节点。如上图中所有的NULL LEAF结点都是叶子结点。

6.二叉树:每个节点最多只有两个子结点的树结构称为二叉树。如上图就是一种二叉树的数据结构。

树的一些基本术语就介绍到这里,其他的请同学们自行查阅资料学习吧,这里就不再多说了 : )

 

 

什么是红黑树

上面已经说了TreeMap是基于红黑树的存储结构,那什么是红黑树呢?

红黑树是一种特殊的二叉树,它的每个结点都额外有一个颜色的属性,颜色只有两种:红色和黑色。

关于红黑树有以下几个规定:

1.首先当前树必须为二叉树的结构。

2.每个结点都有一种颜色,且颜色只能为红色或黑色

3.根结点必须是黑色。

4.叶子结点必须是黑色。

5.不能同时出现父结点和子结点都是红色的情况。即如果一个结点是父结点且为红色,则它的子结点必须全部为黑色。

6.从根结点到每个叶子结点经过的路程中,黑色结点的数量必须是一样的。

   比如  0026 -> 0017 -> 0012 -> 0010 -> 0003 -> 叶子结点,这条路径上共有4个黑色结点;

            0026 -> 0041 -> 0030 -> 0038 -> 叶子结点,这条路径上也有4个黑色结点。

只有以上6个条件全部满足的树,我们才称其为红黑树。比如上图的中的树结构就是一个标准的红黑树。

 

 

TreeMap源码中的数据结构及相关属性

 1     /**
 2      * 红黑树每个结点对象的数据结构
 3      * 4      *
 5      * @param <K>  key
 6      * @param <V>  value
 7      */
 8     static final class Entry<K,V> implements Map.Entry<K,V> {
 9         K key;   //键
10         V value; //值
11         Entry<K,V> left;  //左子结点引用
12         Entry<K,V> right;  //右子结点引用
13         Entry<K,V> parent;  //父结点引用
14         boolean color = BLACK;  //结点默认为黑色
15 
16         /**
17          * 构造一个叶子结点,默认无左右子结点,颜色为黑色
18          */
19         Entry(K key, V value, Entry<K,V> parent) {
20             this.key = key;
21             this.value = value;
22             this.parent = parent;
23         }
24 
25         /**
26          * 返回key
27          *
28          * @return the key
29          */
30         public K getKey() {
31             return key;
32         }
33 
34         /**
35          * 返回key对应的value
36          *
37          * @return the value associated with the key
38          */
39         public V getValue() {
40             return value;
41         }
42 
43         /**
44          * 替换对应的值
45          *
46          * @return 原先被替换的值
47          */
48         public V setValue(V value) {
49             V oldValue = this.value;
50             this.value = value;
51             return oldValue;
52         }
53 
54         /**
55          * 重写结点的equals()方法,比较结点的大小时使用
56          */
57         public boolean equals(Object o) {
58             if (!(o instanceof Map.Entry))
59                 return false;
60             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
61             //必须key和value都相同才算相等
62             return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
63         }
64 
65         /**
66          * 重写结点的hashCode()方法
67          */
68         public int hashCode() {
69             int keyHash = (key==null ? 0 : key.hashCode());
70             int valueHash = (value==null ? 0 : value.hashCode());
71             return keyHash ^ valueHash;  //key的hashCode 异或  value的hashCode
72         }
73 
74         /**
75          * 重写toString()方法
76          */
77         public String toString() {
78             return key + "=" + value;
79         }
80     }
81     
82     /** 用户自定义的比较器 */
83     private final Comparator<? super K> comparator;
84 
85     /** 红黑树根结点  */
86     private transient Entry<K,V> root;
87 
88     /** 红黑树总结点个数  */
89     private transient int size = 0;

可以看到TreeMap因为实现了Map的结点的数据结构,所以同样有key和value两个属性。并且因为是红黑树,所以还有父结点、左右子结点的引用以及结点颜色这些属性。

我们看到第83行有个 comparator 属性,它表示当前TreeMap使用的是哪种比较器。

大家都知道TreeMap是支持结点排序的,它有两种排序方式:

1.按照结点key的自然顺序维护结点的顺序。比如有两个结点 A Entry<1,"11"> 和  B Entry<2,"222">,以这种key的自然排序来讲,如果先插入A后插入B,则A为B父结点,B为A的右子结点;如果先插入B后插入A,那么B为A的父结点,A为B的左子结点。

2.另一种排序是用户自定义的排序方式。在构造方法中传入一个自定义的比较器,则TreeMap会根据用户自己定义的结点对象比较大小的方法来维护结点的顺序。

 

 

TreeMap构造方法

 1     /**
 2      * 无参数构造方法,使用key的自然比较顺序来维护树中结点的顺序
 3      */
 4     public TreeMap() {
 5         comparator = null;
 6     }
 7 
 8     /**
 9      * 带参数构造方法,使用用户传入的比较器来维护树中结点的顺序
10      * @param 用户自定义比较器,如果为空,则该Map会使用key的自然排序维护树的顺序
11      */
12     public TreeMap(Comparator<? super K> comparator) {
13         this.comparator = comparator;
14     }

 

 

TreeMap获取某个结点的源码分析

 1     /**
 2      * 获取节点的操作
 3      * 如果在map中找到了这个键,则返回键对应的值;找不到对应的键或者键指向为null,否则返回null
 4      *
 5      * @throws ClassCastException 用户传入的key和当前map中的key无法比较(不是同一类型),则报该异常
 6      * @throws NullPointerException 使用了自然排序但传入的key为null,或者比较器不支持key为null的情况,则报此异常
 7      *         
 8      */
 9     public V get(Object key) {
10         Entry<K,V> p = getEntry(key);   //可以看到实际上是调用getEntry()这个方法来获取节点的
11         return (p==null ? null : p.value);
12     }
13     
14     
15     /**
16      * 返回通过传入的键在map中找到的相应entry,若未找到则返回null
17      *
18      * @throws ClassCastException 用户传入的key和当前map中的key无法比较(不是同一类型),则报该异常
19      * @throws NullPointerException 使用了自然排序但传入的key为null,或者比较器不支持key为null的情况,则报此异常
20      */
21     final Entry<K,V> getEntry(Object key) {
22         // 首先要区分是使用map键的自然排序查找还是使用用户自定义的比较器来进行查找
23         if (comparator != null)  //如果用户传入了自定义比较器
24             return getEntryUsingComparator(key); //调用getEntryUsingComparator()方法,通过用户自定义比较器的compare()方法查找entry
25         if (key == null)  //如果key为null,报空指针异常
26             throw new NullPointerException();
27         Comparable<? super K> k = (Comparable<? super K>) key;  //没有传入自定义比较器,使用key的自然排序比较传入的key和map中的key
28         Entry<K,V> p = root;  //从根节点开始比较
29         while (p != null) {  //如果节点不是空,则一直循环遍历比较
30             int cmp = k.compareTo(p.key); //获取传入的key和当前节点key的比较结果,使用自然排序Comparable实现的compareTo()方法进行比较
31             if (cmp < 0)  //结果<0,说明传入的key比当前节点的key小
32                 p = p.left; //将下次比较的节点变更为当前节点的左子节点
33             else if (cmp > 0)  //结果>0,说明传入的key比当前节点的key大
34                 p = p.right; //将下次比较的节点变更为当前节点的右子节点
35             else  //结果相等,则该节点就是要查找的节点
36                 return p;  //直接返回节点对应的Entry
37         }
38         return null;   //遍历完整个树也没找到,则返回null
39     }
40     
41     
42 
43     /**
44      * 使用用户自定义比较器的比较方法来查找节点
45      * 逻辑与通过自然排序查找类似,不再赘述
46      */
47     final Entry<K,V> getEntryUsingComparator(Object key) {
48         @SuppressWarnings("unchecked")
49             K k = (K) key;
50         Comparator<? super K> cpr = comparator;
51         if (cpr != null) {
52             Entry<K,V> p = root;
53             while (p != null) {
54                 int cmp = cpr.compare(k, p.key);  //仅仅这里和getEntry()方法不同,使用自定义比较器的compare()方法进行比较
55                 if (cmp < 0)
56                     p = p.left;
57                 else if (cmp > 0)
58                     p = p.right;
59                 else
60                     return p;
61             }
62         }
63         return null;
64     }

可以看到查找其实很简单,就是从根结点开始往下遍历比较。如果要查找的节点比较小,则继续往左子结点比较;反之则往右子结点比较;如果相等,则当前结点就是要查找的结点。

要注意的只有一点,即TreeMap使用的是key的自然排序还是用户自定义的排序。

key自然排序使用的是实现了Comparable接口的compareTo()方法来进行比较,而用户自定义排序则使用的实现Comparator接口的compare()方法来比较。

 

这里延伸一个经典的面试题:Comparable接口和Comparator接口有啥相同和不同之处?

相同点:两个接口都是用于支持对象进行比较大小所定义的。

不同点:

1.Comparable具体实现比较大小的方法是CompareTo(),而Comparator具体实现比较大小的方法是Compare()。

2.Comparable一般强调相同类型的对象进行比较(比如小明和小红都是人类,那他们之间的大小就是按年龄大小来进行比较的,那么CompareTo()方法中其实就是两人的age进行比较);

   而相对的Comparator一般强调不同类型的对象进行比较(比如小华是人类,旺财是狗,而人类要和狗进行比较大小,则必须由用户自己制定一个比较规则来确定谁大谁小,那么compare()方法中其实就是自定义的两个类型的不同属性进行比较)。

 

明确这两个接口的区别后,上面查询结点的方法也就不难理解啦  : )

本篇文章到此结束,内容还是偏基础,希望大家不吝赐教。

那么下篇文章我会和大家一起分析下在插入节点后,红黑树内部数据结构是怎样一步步变化的,敬请期待哟~