欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensorflow实战之全连接神经网络实现mnist手写字体识别

程序员文章站 2022-07-04 21:01:38
...
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#参数设置
input_nodes = 784  #输入节点数
output_nodes = 10  #输出节点数
layer1_nodes = 500 #隐层节点数
bitch_size = 100 #每次训练包含的数据个数
learning_rate = 0.8 #初始学习率
learning_rate_deacy = 0.99 #学习率衰减率
l2_regulation = 0.0001 #l2正则化系数
moving_rate_deacy = 0.99 #滑动模型那个衰减率
train_num = 10000
#前向传播,variable_average平均滑动模型参数
def inference(x,variable_average,w1,b1,w2,b2):
    
    if variable_average == None:    
        layer1 = tf.nn.relu(tf.matmul(x,w1)+b1)
        return tf.matmul(layer1,w2)+b2
    
    else:
        layer1 = tf.nn.relu(tf.matmul(x,variable_average.average(w1))+variable_average.average(b1))
        return tf.matmul(layer1,variable_average.average(w2))+variable_average.average(b2)
def train(mnist): 
    
    #features and labels
    x = tf.placeholder(tf.float32,[None,784])
    y_ = tf.placeholder(tf.float32,[None,10])
    
    #参数初始化
    w1 = tf.Variable(tf.truncated_normal([input_nodes,layer1_nodes],stddev=0.1))
    b1 = tf.Variable(tf.constant(0.1,shape=[layer1_nodes]))
    w2 = tf.Variable(tf.truncated_normal([layer1_nodes,output_nodes],stddev=0.1))
    b2 = tf.Variable(tf.constant(0.1,shape=[output_nodes]))
    
    #不使用平均化滑动模型的前向传播结果
    y = inference(x,None,w1,b1,w2,b2)
    
    #平均滑动模型
    global_step = tf.Variable(0,trainable=False)
    #定义一个平均滑动模型的类
    variable_average = tf.train.ExponentialMovingAverage(0.99,global_step)
    #定义一个平均华东模型操作,应用给所有可训练变量
    variable_average_op = variable_average.apply(tf.trainable_variables())
    #使用平均化滑动模型的前向传播结果
    average_y = inference(x,variable_average,w1,b1,w2,b2)
    
    #交叉熵损失函数
    cost_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.arg_max(y_,1))
    cost_entropy_mean = tf.reduce_mean(cost_entropy)
    
    #l2正则化
    regulations = tf.contrib.layers.l2_regularizer(0.0001)
    l2_regulation = regulations(w1)+regulations(w2)
    
    #带有正则化的损失函数作为最终的损失函数
    loss = cost_entropy_mean+l2_regulation
    
    #学习率衰减
    learning_rate_deacy = tf.train.exponential_decay(learning_rate=0.8,global_step=global_step,decay_steps=100,
                                                     decay_rate=0.99)
    #训练
    train_step = tf.train.GradientDescentOptimizer(learning_rate_deacy).minimize(loss,global_step=global_step)
    
    #tf.group函数保证再一次迭代中,参数的train和参数的平均滑动都被执行
    train_op = tf.group(train_step,variable_average_op)
    
    #准确率
    correct_predict = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_predict,tf.float32))
    
    #定义一个初始化的操作
    init_op = tf.global_variables_initializer()

    with tf.Session() as sess: 
        init_op.run()
        validation_feed = {x:mnist.validation.images,y_:mnist.validation.labels} #验证数据
        test_feed = {x:mnist.test.images,y_:mnist.test.labels} #测试数据
        for i in range(train_num):
            if i%1000 == 0:
                validation_acc = sess.run(accuracy,feed_dict=validation_feed)
                print('训练%d次验证集准确率是%g'%(i+1,validation_acc))
            #训练数据
            x_data,y_data = mnist.train.next_batch(bitch_size)
            train_feed = {x:x_data,y_:y_data}
            sess.run(train_op,feed_dict=train_feed)
        #测试精度
        test_acc = sess.run(accuracy,feed_dict=test_feed)
        print('测试精度是%g'%test_acc)
mnist = input_data.read_data_sets('data',one_hot=True)
train(mnist)
tensorflow实战之全连接神经网络实现mnist手写字体识别



相关标签: tensorflow