欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

POJ 2478Farey Sequence

程序员文章站 2022-07-04 19:37:11
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17744 Accepted: 7109 Description The Farey Sequence Fn for any integer n wit ......
Farey Sequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17744   Accepted: 7109

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

Source

POJ Contest,Author:Mathematica@ZSU
 
 
std的玄学做法没看懂
给n,求ans[n]。其中$ans[n]=ans[n-1]+phi[n]$,且n的范围比较大,在10的6次以内。则考虑打表解决。 
先得到能整除i的最小正整数$md[i]$(一定是个素数),再利用性质3,得到$phi[i]$
不过我用线性筛水过去啦。
 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long 
using namespace std;
const LL MAXN=3*1e6+10;
LL prime[MAXN],tot=0,vis[MAXN],phi[MAXN],N;
void GetPhi()
{
    for(LL i=2;i<=N;i++)
    {
        if(!vis[i])
        {
            prime[++tot]=i;
            phi[i]=i-1;
        }
        for(LL j=1;j<=tot&&prime[j]*i<=N;j++)
        {
            vis[ i*prime[j] ] = 1; 
            if(i%prime[j]==0)
            {
                phi[ i*prime[j] ]=phi[i]*prime[j];
                break;
            }
            else phi[ i*prime[j] ]=phi[i]*(prime[j]-1);
        }
    }
    for(LL i=1;i<=N;i++)
        phi[i]=phi[i]+phi[i-1];
}
int main()
{
    N=2*1e6+10;
    GetPhi();
    while(cin>>N&&N!=0)
        printf("%lld\n",phi[N]);
    return 0;
}