欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MongoDB的聚合框架Aggregation Framework入门学习教程

程序员文章站 2022-07-04 17:59:17
1. 聚合框架 使用聚合框架对集合中的文档进行变换和组合,可以用多个构件创建一个管道(pipeline),用于对一连串的文档进行处理。这些构件包括筛选(filtering...

1. 聚合框架
使用聚合框架对集合中的文档进行变换和组合,可以用多个构件创建一个管道(pipeline),用于对一连串的文档进行处理。这些构件包括筛选(filtering),投射(projecting),分组(grouping),排序(sorting),限制(limiting),跳过(skipping)。
例如一个保存着动物类型的集合,希望找出最多的那种动物,假设每种动物被保存为一个mongodb文档,可以按照以下步骤创建管道。
1)将每个文档的动物名称映射出来。
2)安装名称排序,统计每个名称出现的次数。
3)将文档按照名称出现的次数降序排列。
4)将返回结果限制为前五个。
具体操作符:
1){"$porject", {"name" : 1}}
类似于查询阶段的字段选择器,指定"fieldname" : 1选定需要的字段,"fieldname" : 0排除不需要的字段,"_id"字段自动显示。结果保存在内存中,不会写入磁盘。

db.test_collection.aggregate({"$project" : {"name" : 1}});    =>
{ "_id" : objectid("535a2d3c169097010b92fdf6"), "name" : "snake" }

2){"$group", {"_id" : "$name", "count" : {"$sum" : 1}}}
首先指定了分组的字段"name",该操作执行完后,每个name只对应一个结果,所有可以将name指定为唯一标识符"_id"。
第二个字段表明分组内的每个文档"count"字段加1。新加入的文档中不会有count字段。

db.test_collection.aggregate({"$project" : {"name" : 1}}, {"$group" : {"_id" : "$name", "count" : {"$sum" : 1}}});    =>
{ "_id" : "bird", "count" : 8344 }
{ "_id" : "snake", "count" : 8443 }
{ "_id" : "cat", "count" : 8183 }
{ "_id" : "rabbit", "count" : 8206 }
{ "_id" : "tiger", "count" : 8329 }
{ "_id" : "cow", "count" : 8309 }
{ "_id" : "horse", "count" : 8379 }
{ "_id" : "dog", "count" : 8406 }
{ "_id" : "dragon", "count" : 8372 }
{ "_id" : "elephant", "count" : 8264 }
{ "_id" : "pig", "count" : 8403 }
{ "_id" : "lion", "count" : 8362 }

3){"$sort" : {"count" : -1}}
对结果集中的文档根据count字段做降序排列。
4){"$limit" : 5}
将返回结果限制为5个文档。
将上述结果综合起来:

db.test_collection.aggregate(
{
  "$project" : {"name" : 1}}, 
  {"$group" : {"_id" : "$name", "count" : {"$sum" : 1}}}, 
  {"$sort" : {"count" : -1}},
  {"$limit" : 5}
);

aggregate会返回一个文档数组,内容为出现次数最多的5个动物:

{ "_id" : "snake", "count" : 8443 }
{ "_id" : "dog", "count" : 8406 }
{ "_id" : "pig", "count" : 8403 }
{ "_id" : "horse", "count" : 8379 }
{ "_id" : "dragon", "count" : 8372 }

调试过程中。可以逐一对管道符进行排查。
聚合框架不能对集合进行写入操作,所有结果返回给客户端,聚合结果必须限制在16m以内。

2. 管道操作符
每个操作符都会接受一连串的文档,对这些文档进行类型转换,最后得到的文档作为结果传递给下一操作符。
不同的管道操作符可以将任意顺序组合在一起使用,而且可以被重复任意多次。

2.1 $match
$match用于对文档集合进行筛选,之后得到的文档子集做聚合。
"$match"支持所有的常规查询操作符("$gt","$lt","$ne")等,不能使用地理空间操作符。
实际操作中尽量将"$match"放在管道的前面部分,一方面可以提快速将不需要的文档过滤掉,另外在映射和分组前筛选,查询可以使用索引。

2.2 $project
使用"$project"可以提取字段,可以重命名字段,

db.foo.aggregate({"$project" : {"city" : 1, "_id" : 0}})    =>
{ "city" : "new work" }

可以将投射过的字段重命名:

db.foo.aggregate({"$project" : {"newcity" : "$city", "_id" : 0}})    =>
{ "newcity" : "new work" }

使用"$fieldname"语法为了在聚合框架中引用fieldname字段,例如上面"$city"会被替换为"new work"。
对字段重命名后,mongdb不会记录其记录字段的历史名称,所以应该在修改字段名称前使用索引。
2.2.1 管道表达式
可以使用表达式将多个字面量和变量组合为一个值。
可以使用组合或者任意深度的嵌套,创建复杂的表达式。
2.2.2 数学表达式
数学表示式用来操作数据运算。

db.foo.aggregate(
  {"$project" :
    {"total" : 
      {"$add" : ["$age", "$year"]},
      "_id" : 0
    }
  }
)
{"total" : 15}

可以将多个表达式组合为更为复杂的表达式:

db.foo.aggregate(
  {"$project" :
    {"sub" :
      {"$subtract" : [{"$add" : ["$age", "$year"]}, 7]}, 
      "_id" : 0
    }
  }
)
{ "sub" : 8 }

操作符语法:
1)"$add" : [expr1, [, expr2, ..., exprn]]
将表达式相加
2)"$subtract" : [expr1, expr2]
表达式1减去表达式2
3)"$multiply" : [expr1, [, expr2, ..., exprn]]
将表达式相乘
4)"$divide" : [expr1, expr2]
表达式1除以表达式2得到商
5)"$mod" : [expr1, expr2]
表达式1除以表达式2得到余数

2.2.3 日期表达式
用于提取日期信息的表达式:"$year","$month","$week","$dayofmonth","$dayofweek","$hour","$minute","$second"。只能对日期类型的字段进行日期操作,不能对数值类型进行日期操作。

db.bar.insert({"name" : "pipi", "date" : new date()})
db.bar.aggregate(
  {"$project" : 
    {"birth-month" : 
      {"$month" : "$date"},
      "_id" : 0
    }
  }
)
{ "birth-month" : 4 }

也可以使用字面量日期。

db.bar.aggregate(
  {"$project" : 
    {"up-to-now" : 
      {"$subtract" : [{"$minute" : new date()}, {"$minute" : "$date"}]},
      "_id" : 0
    }
  }
)
{ "up-to-now" : 18 }

2.2.3 字符串表达式
操作符语法:
1)"$substr" : [expr, startoffset, numoreturn]
接受字符串,起始位置以后偏移n个字节,截取字符串。
2)"$concat" : [expr1[, expr2, ..., exprn]]
将给定的表达式连接在一起作为返回结果。
3)"$tolower" : expr
返回参数的小写形式
4)"$toupper" : expr
返回参数的大写形式
例如:

db.foo.insert({"firstname" : "caoqing", "lastname" : "lucifer"})
db.foo.aggregate(
{
  "$project" : {
    "email" : {
      "$concat" : [
        {"$substr" : ["$firstname", 0, 1]},
        ".",
        "$lastname",
        "@gmail.com"
          ]
        },
        "_id" : 0
      }
  }
)
{ "email" : "c.lucifer@gmail.com" }

2.2.3 逻辑表达式
操作符语法:
1)"$cmp" : [expr1, expr2]
比较两个参数,相等返回0,大于返回整数,小于返回负数。
2)"$strcasecmp" : [string1, string2]
比较字符串,区分大小写
3)"$eq"/"$ne"/"$gt"/"$gte"/"lt"/"lte" : [expr1, expr2]
比较字符串,返回结果(true or false)
4)"$and" : [expr1[, expr2, ..., exprn]]
所有值为true返回true,否则返回false。
5)"$or" : [expr1[, expr2, ..., exprn]]
任意表达式为true返回true,否则返回false
6)"$not" : expr
对表示式取反
还有两个控制语句。

"$crond" : [booleanexpr, trueexpr, falseexpr]

如果为true,返回trueexpr,否则,返回falseexpr。

"$iffull" : [expr, replacementexpr]

如果expr为null,返回replacementexpr,否则返回expr。
算术操作符必须接受数值,日期操作符必须接受日期,字符串操作符必须接受字符串。
例如,根据学生出勤率(10%),平时作业(30%)和考试成绩(60%)得出最终成绩,如果是老师宠爱的学生,直接得100分:
插入数据:

db.bar.insert(
  {
    "name" : "xiaobao",
    "teacherspet" : 1,
    "attendance" : 90,
    "quizz" : 80,
    "test" : 85
  }
)
db.bar.insert(
  {
    "name" : "caoqing",
    "teacherspet" : 0,
    "attendance" : 20,
    "quizz" : 50,
    "test" : 90
  }
)
db.bar.insert(
  {
    "name" : "pipi",
    "teacherspet" : 0,
    "attendance" : 100,
    "quizz" : 50,
    "test" : 10
  }
)

聚合:

db.bar.aggregate(
  {
    "$project" : {
      "grade" : {
        "$cond" : [
          "$teacherspet",
          100,
        {
          "$add" : [
            {"$multiply" : [0.1, "$attendance"]},
            {"$multiply" : [0.3, "$quizz"]},
            {"$multiply" : [0.6, "$test"]},
          ]
        }
        ]
      }, 
      "_id" : 0
    }
  }
)

返回结果:

{ "grade" : 100 }
{ "grade" : 71 }
{ "grade" : 31 }

3. mapreduce
mapreduce非常强大与灵活,mongodb使用javascript作为查询语言,可以表示任意复杂的逻辑。
mapreduce非常慢,不应该用在实际的数据分析中。
mapreduce可以在多台服务器之间并行执行,可以将一个问题拆分为多个小问题,之后将各个小问题发送到不同的机器上,每台机器只负责完成一部分工作,所有的机器完成时,将这些零碎的解决方案合并为一个完整的解决方案。
最开始的是映射(map),将操作映射到集合中的各个文档,然后是中间环节,成为洗牌(shuffle),按照键分组,将产生的键值组成列表放在对应的键中。化简(reduce)则是把列表中的值化简为一个单值。

3.1 找出集合中的所有键
mongodb假设你的模式是动态的,所以并不会跟踪记录每个文档的键。通常找到集合中所有文档的所有键的最好方式就是mapreduce。
在映射环节,map函数使用特别的emit函数返回要处理的值。emit会给mapreduce一个键和一个值。
这里用emit将文档某个键的计数返回。this就是当前映射文档的引用:

map = function() {
  emit(this.country, {count : 1});
}

reduce接受两个参数,一个是key,就是emit返回的第一个值,还有一个数组,由一个或多个键对应的{count : 1}文档组成。

reduce = function(key, value) {
  var result = {count : 0};
  for (var i = 0; i < value.length; i++) {
    result.count += value[i].count;
  }
  return result;
}

示例表数据:

{ "_id" : 38, "country" : "japan", "money" : 724 }
{ "_id" : 39, "country" : "germany", "money" : 520 }
{ "_id" : 40, "country" : "india", "money" : 934 }
{ "_id" : 41, "country" : "china", "money" : 721 }
{ "_id" : 42, "country" : "germany", "money" : 156 }
{ "_id" : 43, "country" : "canada", "money" : 950 }
{ "_id" : 44, "country" : "india", "money" : 406 }
{ "_id" : 45, "country" : "japan", "money" : 776 }
{ "_id" : 46, "country" : "canada", "money" : 468 }
{ "_id" : 47, "country" : "germany", "money" : 262 }
{ "_id" : 48, "country" : "germany", "money" : 126 }
{ "_id" : 49, "country" : "japan", "money" : 86 }
{ "_id" : 50, "country" : "canada", "money" : 870 }
{ "_id" : 51, "country" : "india", "money" : 98 }
{ "_id" : 52, "country" : "india", "money" : 673 }
{ "_id" : 53, "country" : "japan", "money" : 487 }
{ "_id" : 54, "country" : "india", "money" : 681 }
{ "_id" : 55, "country" : "canada", "money" : 491 }
{ "_id" : 56, "country" : "japan", "money" : 98 }
{ "_id" : 57, "country" : "china", "money" : 172 }

运行结果:

db.foo.mapreduce(map, reduce, {out : "collection"})
{
    "result" : "collcetion",
    "timemillis" : 83,
    "counts" : {
        "input" : 99,
        "emit" : 99,
        "reduce" : 5,
        "output" : 5
    },
    "ok" : 1,
    "$glestats" : {
        "lastoptime" : timestamp(1399168165, 15),
        "electionid" : objectid("535a2ce15918f42de9ab1427")
    },
}

(1)result:存放的集合名
(2)timemillis:操作花费的时间,单位是毫秒
(3)input:传入文档数目
(4)emit:此函数被调用的次数
(5)reduce:此函数被调用的次数
(6)output:最后返回文档的个数
查看下collection结果内容:

 db.collection.find();
{ "_id" : "canada", "value" : { "count" : 19 } }
{ "_id" : "china", "value" : { "count" : 15 } }
{ "_id" : "germany", "value" : { "count" : 25 } }
{ "_id" : "india", "value" : { "count" : 20 } }
{ "_id" : "japan", "value" : { "count" : 20 } }

3.2 maprecude其他的键
(1)"finalize" : function
可以将reduce的结果发送给这个键,这是整个处理过程的最后一步。
(2)"keeptemp自动为true。" : boolean
如果为true,则在连接关闭后结果保存,否则不保存。
(3)"out" : string
输出集合的名称,如果设置,keeptemp自动为true。
(4)"query" : document
在发往map前,先用指定条件过滤文档。
(5)"sort" : document
在发往map前,先进行排序。
(6)"limit" : integer
发往map函数的文档数量上限。
(7)"scope" : document
可以在javascripts代码中使用的变量。
(8)"verbose" : boolean
是否记录详细的服务器日志。
3.2.1 finalize函数
可以使用finalize函数作为参数,会在最后一个reduce输出结果后执行,然后将结果保存在临时集合里。
3.2.2 保存结果集合
默认情况下,执行mapreduce时创建一个临时集合,集合名称为mr.stuff.ts.id,即mapreduce.集合名.时间戳.数据库作业id。mongodb会在调用的连接关闭时自动销毁这个集合。
3.2.3 对子文档执行mapreduce
每个传递给map的文档都需要先反序列化,从bson对象转换为js对象,这个过程非常耗时,可以先对文档过滤来提高map速度,可以通过"query","limit"和"sort"等对文档进行过滤。
"query"的值是一个查询文档。
"limit","sort"配合可以发挥很大的作用。
"query","limit"和"sort"可以随意组合使用。
3.2.4 作用域
作用域键"scope",可以用变量名:值这样普通的文档来设置该选项,
3.2.5 获取更多的输出
设置verbose为true,可以将mapreduce过程更多的信息输出到服务器日志上。

4 聚合命名
count和distinct操作可以简化为普通命令,不需要使用聚合框架。
4.1 count
count返回集合中的文档数量:

db.foo.count() =>
99

可以传入一个查询文档:

db.foo.count({country : "china"}) =>
15

增加查询条件会使count变慢。
4.2 distinct
distinct用来找出给定键的所有不同值。使用时必须指定集合和键。

db.runcommand({ "distinct" : "foo", "key" : "country"}) =>
{
    "values" : [
        "japan",
        "germany",
        "india",
        "china",
        "canada"
    ],
    "stats" : {
        "n" : 99,
        "nscanned" : 99,
        "nscannedobjects" : 99,
        "timems" : 22,
        "cursor" : "basiccursor"
    },
    "ok" : 1,
    "$glestats" : {
        "lastoptime" : timestamp(1399171995, 15),
        "electionid" : objectid("535a2ce15918f42de9ab1427")
    }
}

4.3 group
使用group可以进行更为复杂的聚合。先选定分组所依据的键,然后根据选定键的不同值分为若干组,然后对每一个分组进行聚合,得到结果文档。
插入示例数据:

var name = ["caoqing", "spider-man", "garfield"]
for (var i = 0; i < 10000; i++) {
  iname = name[math.floor(math.random() * name.length)];
  date = new date().gettime();
  number = math.floor(100 * math.random());
  db.coll.insert({_id : i, name : iname, time : date, age : number});
}

生成的列表中包含最新的时间和最新的时间对应的年纪。
可以安装name进行分组,然后取出每个分组中date最新的文档,将其加入结果集。

db.runcommand({"group" : {
  "ns" : "coll",
  "key" : {"name" : true},
  "initial" : {"time" : 0},
  "$reduce" : function(doc, prev) {
    if (doc.time > prev.time) {
      prev.age = doc.age;
      prev.time = doc.time;
    }
  }
}})

(1)"ns" : "coll"
指定进行分组的集合。
(2)"key" : {"name" : true}
指定分组依据的键。
(3)"initial" : {"time" : 0}
初始化time值,作为初始wednesday传递给后续过程。每组成员都会使用这个累加器。
结果:

"$reduce" : function(doc, prev) {...}
{
    "retval" : [
        {
            "name" : "spider-man",
            "time" : 1399179398567,
            "age" : 55
        },
        {
            "name" : "garfield",
            "time" : 1399179398565,
            "age" : 85
        },
        {
            "name" : "caoqing",
            "time" : 1399179398566,
            "age" : 86
        }
    ],
    "count" : 10000,
    "keys" : 3,
    "ok" : 1,
    "$glestats" : {
        "lastoptime" : timestamp(1399179362, 1),
        "electionid" : objectid("535a2ce15918f42de9ab1427")
    }
}

如果有文档不存在指定分组的键,这些文档会单独分为一组,缺失的键会使用name:null这样的形式。如下:

db.coll.insert({age : 5, time : new date().gettime()})

返回结果:

    ...
    {
      "name" : null,
      "time" : 1399180685288,
      "age" : 5
    }
    "count" : 10001,
    "keys" : 4,
    ...

为了排除不包含指定用于分组的键的文档,可以在"condition"中加入"name":{"$exists" : true}。

db.runcommand({"group" : {
  "ns" : "coll",
  "key" : {"name" : true},
  "initial" : {"time" : 0},
  "$reduce" : function(doc, prev) {
    if (doc.time > prev.time) {
      prev.age = doc.age;
      prev.time = doc.time;
    }
  },
  "condition" : {"name" : {"$exists" : true}}
}})

4.3.1 使用完成器
完成器(finalizer)用于精简从数据库传到用户的数据,因为group命令的输出结果需要能够通过单次数据库响应返回给用户。
4.3.2 将函数作为键使用
分组条件可以非常复杂,不是单个键,例如分组时按照类别分组dog和dog是两个完全不同的组,为了消除大小写差异,可以定义一个函数决定文档分组所依据的键。
定义分组函数需要用到"$keyf"键,

db.foo.group({
  "ns" : "foo",
  "$keyf" : function(x) { return x.category.tolowercase(); };
  "initial" : ...,
  ......
})