欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【赵强老师】在MongoDB中使用MapReduce方式计算聚合

程序员文章站 2022-07-04 17:36:31
...

【赵强老师】在MongoDB中使用MapReduce方式计算聚合
            
    
    博客分类: 大数据SQLNoSQLMongoDBmysqlRedisOracle 大数据SQLNoSQLMongoDBmysql 

MapReduce 能够计算非常复杂的聚合逻辑,非常灵活,但是,MapReduce非常慢,不应该用于实时的数据分析中。MapReduce能够在多台Server上并行执行,每台Server只负责完成一部分wordload,最后将wordload发送到Master Server上合并,计算出最终的结果集,返回客户端。
MapReduce的基本思想,如下图所示:

【赵强老师】在MongoDB中使用MapReduce方式计算聚合
            
    
    博客分类: 大数据SQLNoSQLMongoDBmysqlRedisOracle 大数据SQLNoSQLMongoDBmysql 

在这个例子中,我们以一个求和为例。首先执行Map阶段,把一个大任务拆分成若干个小任务,每个小任务运行在不同的节点上,从而支持分布式计算,这个阶段叫做Map(如蓝框所示);每个小任务输出的结果再进行二次计算,最后得到结果55,这个阶段叫做Reduce(如红框所示)。

使用MapReduce方式计算聚合,主要分为三步:Map,Shuffle(拼凑)和Reduce,Map和Reduce需要显式定义,shuffle由MongoDB来实现。

  • Map:将操作映射到每个doc,产生Key和Value
  • Shuffle:按照Key进行分组,并将key相同的Value组合成数组
  • Reduce:把Value数组化简为单值

我们以下面的测试数据(员工数据)为例,来为大家演示。

db.emp.insert(
[
{_id:7369,ename:'SMITH' ,job:'CLERK'    ,mgr:7902,hiredate:'17-12-80',sal:800,comm:0,deptno:20},
{_id:7499,ename:'ALLEN' ,job:'SALESMAN' ,mgr:7698,hiredate:'20-02-81',sal:1600,comm:300 ,deptno:30},
{_id:7521,ename:'WARD'  ,job:'SALESMAN' ,mgr:7698,hiredate:'22-02-81',sal:1250,comm:500 ,deptno:30},
{_id:7566,ename:'JONES' ,job:'MANAGER'  ,mgr:7839,hiredate:'02-04-81',sal:2975,comm:0,deptno:20},
{_id:7654,ename:'MARTIN',job:'SALESMAN' ,mgr:7698,hiredate:'28-09-81',sal:1250,comm:1400,deptno:30},
{_id:7698,ename:'BLAKE' ,job:'MANAGER'  ,mgr:7839,hiredate:'01-05-81',sal:2850,comm:0,deptno:30},
{_id:7782,ename:'CLARK' ,job:'MANAGER'  ,mgr:7839,hiredate:'09-06-81',sal:2450,comm:0,deptno:10},
{_id:7788,ename:'SCOTT' ,job:'ANALYST'  ,mgr:7566,hiredate:'19-04-87',sal:3000,comm:0,deptno:20},
{_id:7839,ename:'KING'  ,job:'PRESIDENT',mgr:0,hiredate:'17-11-81',sal:5000,comm:0,deptno:10},
{_id:7844,ename:'TURNER',job:'SALESMAN' ,mgr:7698,hiredate:'08-09-81',sal:1500,comm:0,deptno:30},
{_id:7876,ename:'ADAMS' ,job:'CLERK'    ,mgr:7788,hiredate:'23-05-87',sal:1100,comm:0,deptno:20},
{_id:7900,ename:'JAMES' ,job:'CLERK'    ,mgr:7698,hiredate:'03-12-81',sal:950,comm:0,deptno:30},
{_id:7902,ename:'FORD'  ,job:'ANALYST'  ,mgr:7566,hiredate:'03-12-81',sal:3000,comm:0,deptno:20},
{_id:7934,ename:'MILLER',job:'CLERK'    ,mgr:7782,hiredate:'23-01-82',sal:1300,comm:0,deptno:10}
]
);

 

 

(案例一)求员工表中,每种职位的人数

var map1=function(){emit(this.job,1)}
var reduce1=function(job,count){return Array.sum(count)}
db.emp.mapReduce(map1,reduce1,{out:"mrdemo1"})

 

 

(案例二)求员工表中,每个部门的工资总和

var map2=function(){emit(this.deptno,this.sal)}
var reduce2=function(deptno,sal){return Array.sum(sal)}
db.emp.mapReduce(map2,reduce2,{out:"mrdemo2"})

 

 

(案例三)Troubleshoot the Map Function

定义自己的emit函数:
var emit = function(key, value) {
print("emit");
print("key: " + key + "  value: " + tojson(value));
}

测试一条数据:
emp7839=db.emp.findOne({_id:7839})
map2.apply(emp7839)
输出以下结果:
emit
key: 10  value: 5000

测试多条数据:
var myCursor=db.emp.find()
while (myCursor.hasNext()) {
    var doc = myCursor.next();
    print ("document _id= " + tojson(doc._id));
    map2.apply(doc);
    print();
}

 

 

(案例四)Troubleshoot the Reduce Function

一个简单的测试案例
var myTestValues = [ 5, 5, 10 ];
var reduce1=function(key,values){return Array.sum(values)}
reduce1("mykey",myTestValues)

测试:Reduce的value包含多个值
测试数据:薪水、奖金:
var myTestObjects = [
                      { sal: 1000, comm: 5 },
                      { sal: 2000, comm: 10 },
                      { sal: 3000, comm: 15 }
                    ];
开发reduce方法:
var reduce2=function(key,values) {
   reducedValue = { sal: 0, comm: 0 };
   for(var i=0;i<values.length;i++) {
     reducedValue.sal += values[i].sal;
     reducedValue.comm += values[i].comm;
   }  
   return reducedValue;
}

测试:
reduce2("aa",myTestObjects)

 

 

【赵强老师】在MongoDB中使用MapReduce方式计算聚合
            
    
    博客分类: 大数据SQLNoSQLMongoDBmysqlRedisOracle 大数据SQLNoSQLMongoDBmysql