欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

OpenGL二维世界坐标和屏幕坐标系之间的转换

程序员文章站 2022-07-04 09:06:17
...

ScreenToWorld2D

glm::vec3 xxxCamera2D::ScreenToWorld2D(glm::vec3 screen_pt)//screen point-->(x,y,0)
{
	glm::vec3 normalized_screen_pt;

	glm::vec3 world_pt;
	float degree = PI / 2;
	glm::vec3 pt;
	/*方法1:使用矩阵
	前提:世界坐标系固定,求得旋转至屏幕坐标中心为原点的屏幕坐标系的变换矩阵,再求逆*/
	/*Step1:比例伸缩,求伸缩矩阵*/
	glm::vec4 world_center_pt(0);
	glm::vec3 vec_scale(m_fWidth / GetViewWidth(), 1, m_fHeight / GetViewHeight());
	glm::mat4 M_scale = glm::scale(vec_scale);
	/*Step2:平移到m_Eye坐标,求平移矩阵*/
	glm::mat4 M_translate = glm::translate(m_Eye);
	/*Step3:绕Y轴旋转,求旋转矩阵*/
	glm::vec3 normal(0, 1, 0);
	glm::mat4 M_rotate;
	glm::mat4 M_convert;
	glm::mat4 M_convert_inverse;
	/*Screen中心为原点的screen_pt坐标*/
	glm::vec3 converted_screen_center(m_fWidth / 2, 0, m_fHeight / 2);
	glm::vec3 converted_screen_pt;
	converted_screen_pt = (glm::vec3)((screen_pt.x - m_fWidth / 2), 0, (screen_pt.y - m_fHeight / 2));
	glm::vec4 converted_pt_vec4(converted_screen_pt.x, converted_screen_pt.y, converted_screen_pt.z, 1);
	glm::vec4 world_pt_vec4;

	//注意:这里UP_NEGATIVE_Z和UP_POSITIVE_X都已经改成了Z轴垂直朝上的计算方法,
	//但是,UP_POSITIVE_Z和UP_NEGATIVE_X还不确定是否正确
	switch (m_iViewDirection)
	{
	case UP_POSITIVE_Z:
		world_pt = InitialScreenToWorld(screen_pt);
		break;
	case UP_POSITIVE_X:
		/*Scale:Screen坐标系原点先修改为屏幕中心,再拉伸*/
		world_pt = InitialScreenToWorld(screen_pt);
		/*Rotate*/
		pt.x = (world_pt.x - m_Eye.x)*cos(degree) - (world_pt.z - m_Eye.z)*sin(degree) + m_Eye.x;
		pt.y = 0;
		pt.z = (world_pt.z - m_Eye.z)*cos(degree) + (world_pt.x - m_Eye.x)*sin(degree) + m_Eye.z;
		world_pt = pt;
		break;
	case UP_NEGATIVE_Z:
		/*Scale:Screen坐标系原点先修改为屏幕中心,再拉伸*/
		world_pt = InitialScreenToWorld(screen_pt);
		/*Rotate*/
		degree *= 2;
		pt.x = (world_pt.x - m_Eye.x)*cos(degree) - (world_pt.z - m_Eye.z)*sin(degree) + m_Eye.x;
		pt.y = 0;
		pt.z = (world_pt.z - m_Eye.z)*cos(degree) + (world_pt.x - m_Eye.x)*sin(degree) + m_Eye.z;
		world_pt = pt;
		/*M_rotate = glm::rotate(degree * 2, normal);
		M_convert = M_translate *M_rotate* M_scale;
		M_convert_inverse = glm::inverse(M_convert);
		world_pt_vec4 = M_convert_inverse*converted_pt_vec4;
		world_pt = glm::vec3(world_pt_vec4.x, world_pt_vec4.y, world_pt_vec4.z);*/
		break;
	case UP_NEGATIVE_X:
		/*Scale:Screen坐标系原点先修改为屏幕中心,再拉伸*/
		world_pt = InitialScreenToWorld(screen_pt);
		/*Rotate*/
		degree *= 3;
		pt.x = (world_pt.x - m_Eye.x)*cos(degree) - (world_pt.z - m_Eye.z)*sin(degree) + m_Eye.x;
		pt.y = 0;
		pt.z = (world_pt.z - m_Eye.z)*cos(degree) + (world_pt.x - m_Eye.x)*sin(degree) + m_Eye.z;
		world_pt = pt;
		break;
	default:
		break;
	}
	//world_pt = glm::vec3(-world_pt.x, -world_pt.y, -world_pt.z);
	return world_pt;
}




glm::vec3 xxxCamera2D::ScreenToWorld2D(glm::vec3 eye, glm::vec3 screen_pt)//screen point-->(x,y,0)
{
	glm::vec3 normalized_screen_pt;
	normalized_screen_pt.x = (float)screen_pt.x / m_fWidth;
	normalized_screen_pt.y = 0;
	normalized_screen_pt.z = (float)screen_pt.y / m_fHeight;

	normalized_screen_pt.x -= 0.5f;
	normalized_screen_pt.z -= 0.5f;

	glm::vec3 world_pt = normalized_screen_pt * glm::vec3(GetViewWidth(), 0, -GetViewHeight());

	world_pt.x += eye.x;
	world_pt.z += eye.z;
	return world_pt;

}

WorldToScreen

glm::vec3 xxxCamera2D::InitialWorldToScreen(glm::vec3 world_pt)
{
	glm::vec3 normalized_screen_pt, screen_pt;
	world_pt.x -= m_Eye.x;
	world_pt.z -= m_Eye.z;

	normalized_screen_pt = world_pt / glm::vec3(GetViewWidth(), 0, -GetViewHeight());

	normalized_screen_pt.x += 0.5f;
	normalized_screen_pt.z += 0.5f;

	screen_pt.x = (float)normalized_screen_pt.x*m_fWidth;
	screen_pt.y = (float)normalized_screen_pt.z*m_fHeight;
	screen_pt.z = 0;

	return screen_pt;
}