欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU 1757-A Simple Math Problem(矩阵快速幂)

程序员文章站 2022-07-03 21:44:30
...

address : http://acm.hdu.edu.cn/showproblem.php?pid=1757
Problem Description
Lele now is thinking about a simple function f(x).

If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .

Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.

Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.

Output
For each case, output f(k) % m in one line.

Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0

Sample Output
45
104

做了 好几道矩阵快速幂题了, 这道题矩阵一眼就看出了,但 这个矩阵有点有点大 我也不想画了,就摘了温学姐 博客一张图片
敬上:
HDU 1757-A Simple Math Problem(矩阵快速幂)
矩阵 挺好推得这个 计算这个 矩阵的 k-9 次幂 然后乘下 f(0) 到f(9) 即可
模板题 我几乎都用现在个 模板了
code:

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

struct node
{
    int m[10][10];
}ans,a;
int k, m;
node mul(node ans, node a)
{
    node p;
    memset(p.m, 0, sizeof(p.m));
    for(int i = 0; i < 10; i++)  ///i行
        for(int j = 0; j < 10; j++)  ///j列
            for(int k = 0; k < 10; k++)
                p.m[i][j] = (p.m[i][j]+ans.m[i][k]*a.m[k][j])%m;
    return p;
}
void solve(int k)
{
    memset(ans.m, 0, sizeof(ans.m));
    for (int i=0; i<10; i++)
    {
        ans.m[i][i] = 1;
    }
    while (k)
    {
        if (k&1)
            ans = mul(ans, a);
        a = mul(a, a);
        k>>=1;
    }
}
int main()
{
    while (~scanf("%d%d",&k,&m))
    {
        memset(a.m, 0, sizeof(a.m));
        for (int i=0 ; i<10; i++)
        {
            cin>>a.m[0][i];
            a.m[0][i] = a.m[0][i]%m;
        }
        for (int i=1; i<10; i++)
            a.m[i][i-1] = 1;
        if (k<10)
            cout<<k<<endl;
        else
        {
            k = k-9;
            solve(k);
            int show=0;
            for (int i=0; i<10; i++)
            {
                show = (show+ans.m[0][i]*(9-i))%m;
            }
            cout<<show<<endl;
        }
    }
    return 0;
}