洛谷P4043 费用流
程序员文章站
2022-07-03 21:23:10
这题的建图方式可以类比洛谷P1251我是由那个题才想到这么建的,由于每条边至少经过一次,我们又不清楚需要跑多少次,把边看成点,点与汇点相连,可是我们又不知道最大流应该是多少,直接这么连会发生错误。利用那道题的思想,每条边最少需要一次,那么就每条边看做两个点,点1和点2,点1有1的流量流向汇点,点2接受源点的1的流量,这是一个补流的过程。利用补流的过程和把边拆成两个点,我们就可以跑出来最大流是边数的最小费用。#include#include#...
这题的建图方式可以类比洛谷P1251
我是由那个题才想到这么建的,由于每条边至少经过一次,我们又不清楚需要跑多少次,把边看成点,点与汇点相连,可是我们又不知道最大流应该是多少,直接这么连会发生错误。利用那道题的思想,每条边最少需要一次,那么就每条边看做两个点,点1和点2,点1有1的流量流向汇点,点2接受源点的1的流量,这是一个补流的过程。利用补流的过程和把边拆成两个点,我们就可以跑出来最大流是边数的最小费用。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<bitset>
#include<time.h>
#include<string>
#include<cmath>
#include<stack>
#include<map>
#include<set>
#define ui unsigned int
//ios::sync_with_stdio(false);
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define ull unsigned long long
#define endd puts("");
#define re register
#define endl "\n"
#define ll long long
#define double long double
#define il inline
using namespace std;
#define PI 3.1415926535898
const double eqs = 1e-6;
const long long max_ = 1000000 + 7;
const int mod = 1e9 + 7;
const int inf = 1e9 + 7;
const long long INF = 2e18 + 7;
inline int read() {
int s = 0, f = 1;
char ch = getchar();
while (ch<'0' || ch>'9') {
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0'&&ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar();
}
return s * f;
}
inline void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
int head[max_], xiann = 2;
struct kk {
int to, next, flow, val;
kk() {}
kk(int to, int next, int flow, int val) :to(to), next(next), flow(flow), val(val) {}
}xian[max_ << 1];
il void add(int a, int b, int c, int d) {
/*if (c) {
cout << a << " " << b << " " << c << endl;
}*/
xian[xiann] = kk(b, head[a], c, d);
head[a] = xiann;
xiann++;
}
int cur[max_], dis[max_], N = 0, que[max_], L, R;
int S, T;
bool vis[max_];
bool spfa() {
re int i, now, to;
for (i = 0; i <= N; i++) {
cur[i] = head[i]; dis[i] = inf; vis[i] = 0;
}
L = 1, R = 0;
que[++R] = S; vis[S] = 1; dis[S] = 0;
while (L <= R) {
now = que[L]; L++; vis[now] = 0;
for (i = head[now]; i; i = xian[i].next) {
to = xian[i].to;
if (xian[i].flow && dis[to] > dis[now] + xian[i].val) {
dis[to] = dis[now] + xian[i].val;
if (!vis[to]) {
vis[to] = 1;
que[++R] = to;
}
}
}
}
return dis[T] != inf;
}
int mincost, maxflow;
int dfs(int now, int flow) {
if (!flow || now == T)return flow;
re int to, tot = 0, f;
vis[now] = 1;
for (int &i = cur[now]; i; i = xian[i].next) {
to = xian[i].to;
if (!vis[to] && xian[i].flow && dis[to] == dis[now] + xian[i].val && (f = dfs(to, min(flow - tot, xian[i].flow)))) {
tot += f;
xian[i].flow -= f; xian[i ^ 1].flow += f;
mincost += f * xian[i].val;
if (tot == flow)break;
}
}
vis[now] = 0;
return tot;
}
void dinic() {
while (spfa()) {
maxflow += dfs(S, inf);
}
}
il void addEdge(int a, int b, int c, int d) {
//cout << a << " " << b <<" "<< c << endl;
add(a, b, c, d);
add(b, a, 0, -d);
}
vector<pair<int, int> > ask[700];
map<int, pair<int, int> >mp;
il void ini() {
re int n = read(),i,j,num,cost,to,idn,xianid = 0,nowxianid = 0,a,b;
pair<int, int> temp;
idn = n;
for(i = 1;i <= n;i++){
num = read();
for (j = 1; j <= num; j++) {
to = read(); cost = read();
ask[i].push_back(make_pair(to, cost));
++xianid;
a = ++idn; b = ++idn;
mp[xianid] = make_pair(a, b);
}
}
S = 0; N = T = ++idn;
addEdge(S, 1, inf, 0);
for (i = 1; i <= n; i++) {
for (auto pa : ask[i]) {
nowxianid++;
temp = mp[nowxianid];
addEdge(temp.first, temp.second, inf, 0);
addEdge(temp.first, T, 1, 0);
addEdge(S,temp.second, 1, 0);
addEdge(temp.second, pa.first, inf, 0);
addEdge(i, temp.first, inf, pa.second);
}
}
dinic();
cout << mincost;
}
signed main() {
ini();
return 0;
}
本文地址:https://blog.csdn.net/qq_43804974/article/details/107554692