解决Ubuntu18中的pycharm不能调用tensorflow-gpu的问题
程序员文章站
2022-07-03 15:54:31
问题描述:我通过控制台使用tensorflow-gpu没问题,但是通过pycharm使用却不可以,如下所示:通过控制台:answer@answer-desktop:/$ pythonpython 3....
问题描述:我通过控制台使用tensorflow-gpu没问题,但是通过pycharm使用却不可以,如下所示:
通过控制台:
answer@answer-desktop:/$ python python 3.7.0 (default, jun 28 2018, 13:15:42) [gcc 7.2.0] :: anaconda, inc. on linux type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf 2020-02-04 21:37:12.964610: w tensorflow/stream_executor/platform/default/dso_loader.cc:55] could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: no such file or directory; ld_library_path: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64 2020-02-04 21:37:12.964749: w tensorflow/stream_executor/platform/default/dso_loader.cc:55] could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: no such file or directory; ld_library_path: /usr/local/cuda-10.1/lib64:/usr/local/cuda-10.1/lib64 2020-02-04 21:37:12.964777: w tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] cannot dlopen some tensorrt libraries. if you would like to use nvidia gpu with tensorrt, please make sure the missing libraries mentioned above are installed properly. >>> print(tf.test.is_gpu_available()) warning:tensorflow:from <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version. instructions for updating: use `tf.config.list_physical_devices('gpu')` instead. 2020-02-04 21:37:37.267421: i tensorflow/core/platform/profile_utils/cpu_utils.cc:94] cpu frequency: 1795795000 hz 2020-02-04 21:37:37.268461: i tensorflow/compiler/xla/service/service.cc:168] xla service 0x55913b67a840 initialized for platform host (this does not guarantee that xla will be used). devices: 2020-02-04 21:37:37.268516: i tensorflow/compiler/xla/service/service.cc:176] streamexecutor device (0): host, default version 2020-02-04 21:37:37.272139: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcuda.so.1 2020-02-04 21:37:37.481038: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.481712: i tensorflow/compiler/xla/service/service.cc:168] xla service 0x55913b6eb960 initialized for platform cuda (this does not guarantee that xla will be used). devices: 2020-02-04 21:37:37.481755: i tensorflow/compiler/xla/service/service.cc:176] streamexecutor device (0): geforce gtx 1060 3gb, compute capability 6.1 2020-02-04 21:37:37.482022: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.482528: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] found device 0 with properties: pcibusid: 0000:03:00.0 name: geforce gtx 1060 3gb computecapability: 6.1 coreclock: 1.7085ghz corecount: 9 devicememorysize: 5.93gib devicememorybandwidth: 178.99gib/s 2020-02-04 21:37:37.482953: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcudart.so.10.1 2020-02-04 21:37:37.485492: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcublas.so.10 2020-02-04 21:37:37.487486: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcufft.so.10 2020-02-04 21:37:37.487927: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcurand.so.10 2020-02-04 21:37:37.490469: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcusolver.so.10 2020-02-04 21:37:37.491950: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcusparse.so.10 2020-02-04 21:37:37.499031: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcudnn.so.7 2020-02-04 21:37:37.499301: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.500387: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.500847: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] adding visible gpu devices: 0 2020-02-04 21:37:37.500941: i tensorflow/stream_executor/platform/default/dso_loader.cc:44] successfully opened dynamic library libcudart.so.10.1 2020-02-04 21:37:37.502172: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] device interconnect streamexecutor with strength 1 edge matrix: 2020-02-04 21:37:37.502212: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0 2020-02-04 21:37:37.502229: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: n 2020-02-04 21:37:37.502436: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.503003: i tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful numa node read from sysfs had negative value (-1), but there must be at least one numa node, so returning numa node zero 2020-02-04 21:37:37.503593: i tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] created tensorflow device (/device:gpu:0 with 2934 mb memory) -> physical gpu (device: 0, name: geforce gtx 1060 3gb, pci bus id: 0000:03:00.0, compute capability: 6.1) true >>>
返回的true,说明可以
通过pycharm却不行,如下图,返回false
解决办法:
1.修改~/.bashrc
将pycahrm的路径加到环境中,示例如下:
alias pycharm="bash /home/answer/文档/pycharm-professional-2019.3.2/pycharm-2019.3.2/bin/pycharm.sh"
刷新生效:
source ~/.bashrc
2.修改pycharm中的环境变量
选择pycharm 菜单栏run ——> run-edit configurations ——> environment variables——> 将cuda的路径加进去 例如:ld_library_path=/usr/local/cuda-10.1/lib64
在运行就可以了
到此这篇关于解决ubuntu18中的pycharm不能调用tensorflow-gpu的问题的文章就介绍到这了,更多相关pycharm不能调用tensorflow-gpu内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
下一篇: django跳转页面传参的实现
推荐阅读
-
解决新版Pycharm中Matplotlib图像不在弹出独立的显示窗口问题
-
浅析jquery ajax异步调用方法中不能给全局变量赋值的原因及解决方法
-
Tomcat中应用调用Libvirt库进行控制时可能导致线程卡死问题的解决方法
-
解决pycharm回车之后不能换行或不能缩进的问题
-
解决在pycharm中显示额外的 figure 窗口问题
-
解决pycharm的Python console不能调试当前程序的问题
-
解决安装pycharm后不能执行python脚本的问题
-
C++ 调用Python3 脚本中无法引入内建模块的问题解决方法
-
解决Pycharm调用Turtle时 窗口一闪而过的问题
-
解决新django中的path不能使用正则表达式的问题