欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  网络运营

网络协议模型分析

程序员文章站 2022-07-03 08:15:52
网络协议模型分析   网络协议设计者不应当设计一个单一、巨大的协议来为所有形式的通信规定完整的细节,而应把通信问题划分成多个小问题,然后为每一个小问题设计一个单独的协议。这样做使...

网络协议模型分析

 

网络协议设计者不应当设计一个单一、巨大的协议来为所有形式的通信规定完整的细节,而应把通信问题划分成多个小问题,然后为每一个小问题设计一个单独的协议。这样做使得每个协议的设计、分析、时限和测试比较容易。协议划分的一个主要原则是确保目标系统有效且效率高。为了提高效率,每个协议只应该注意没有被其他协议处理过的那部分通信问题;为了主协议的实现更加有效,协议之间应该能够共享特定的数据结构;同时这些协议的组合应该能处理所有可能的硬件错误以及其它异常情况。为了保证这些协议工作的协同性,应当将协议设计和开发成完整的、协作的协议系列(即协议族),而不是孤立地开发每个协议。

 

  在网络历史的早期,国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)共同出版了开放系统互联的七层参考模型。一台计算机操作系统中的网络过程包括从应用请求(在协议栈的顶部)到网络介质(底部) ,OSI参考模型把功能分成七个分立的层次。图1表示了OSI分层模型。

 

  OSI模型的七层分别进行以下的操作:

 

  第一层 物理层

 

  第一层负责最后将信息编码成电流脉冲或其它信号用于网上传输。它由计算机和网络介质之间的实际界面组成,可定义电气信号、符号、线的状态和时钟要求、数据编码和数据传输用的连接器。如最常用的RS-232规范、10BASE-T的曼彻斯特编码以及RJ-45就属于第一层。所有比物理层高的层都通过事先定义好的接口而与它通话。如以太网的附属单元接口(AUI),一个DB-15连接器可被用来连接层一和层二。

 

  第二层 数据链路层

 

  数据链路层通过物理网络链路提供可靠的数据传输。不同的数据链路层定义了不同的网络和协议特征,其中包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。物理编址(相对应的是网络编址)定义了设备在数据链路层的编址方式;网络拓扑结构定义了设备的物理连接方式,如总线拓扑结构和环拓扑结构;错误校验向发生传输错误的上层协议告警;数据帧序列重新整理并传输除序列以外的帧;流控可能延缓数据的传输,以使接收设备不会因为在某一时刻接收到超过其处理能力的信息流而崩溃。数据链路层实际上由两个独立的部分组成,介质存取控制(Media Access Control,MAC)和逻辑链路控制层(Logical Link Control,LLC)。MAC描述在共享介质环境中如何进行站的调度、发生和接收数据。MAC确保信息跨链路的可靠传输,对数据传输进行同步,识别错误和控制数据的流向。一般地讲,MAC只在共享介质环境中才是重要的,只有在共享介质环境中多个节点才能连接到同一传输介质上。IEEE MAC规则定义了地址,以标识数据链路层中的多个设备。逻辑链路控制子层管理单一网络链路上的设备间的通信,IEEE 802.2标准定义了LLC。LLC支持无连接服务和面向连接的服务。在数据链路层的信息帧中定义了许多域。这些域使得多种高层协议可以共享一个物理数据链路。ARP属于这一层。

 

  第三层 网络层

 

  网络层负责在源和终点之间建立连接。它一般包括网络寻径,还可能包括流量控制、错误检查等。相同MAC标准的不同网段之间的数据传输一般只涉及到数据链路层,而不同的MAC标准之间的数据传输都涉及到网络层。例如IP路由器工作在网络层,因而可以实现多种网络间的互联。IP协议在这一层。

 

  第四层 传输层

 

  传输层向高层提供可靠的端到端的网络数据流服务。传输层的功能一般包括流控、多路传输、虚电路管理及差错校验和恢复。流控管理设备之间的数据传输,确保传输设备不发送比接收设备处理能力大的数据;多路传输使得多个应用程序的数据可以传输到一个物理链路上;虚电路由传输层建立、维护和终止;差错校验包括为检测传输错误而建立的各种不同结构;而差错恢复包括所采取的行动(如请求数据重发),以便解决发生的任何错误。传输控制协议(TCP)是提供可靠数据传输的TCP/IP协议族中的传输层协议。UDP协议属于这一层。

 

  第五层 会话层

 

  会话层建立、管理和终止表示层与实体之间的通信会话。通信会话包括发生在不同网络应用层之间的服务请求和服务应答,这些请求与应答通过会话层的协议实现。它还包括创建检查点,使通信发生中断的时候可以返回到以前的一个状态。

 

  第六层 表示层

 

  表示层提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息可以被另一个系统应用层识别。表示层的编码和转化模式包括公用数据表示格式、性能转化表示格式、公用数据压缩模式和公用数据加密模式。

 

  公用数据表示格式就是标准的图像、声音和视频格式。通过使用这些标准格式,不同类型的计算机系统可以相互交换数据;转化模式通过使用不同的文本和数据表示,在系统间交换信息,例如ASCII(American Standard Code for Information Interchange,美国标准信息交换码);标准数据压缩模式确保原始设备上被压缩的数据可以在目标设备上正确的解压;加密模式确保原始设备上加密的数据可以在目标设备上正确地解密。

 

  表示层协议一般不与特殊的协议栈关联,如QuickTime是Applet计算机的视频和音频的标准,MPEG是ISO的视频压缩与编码标准。常见的图形图像格式PCX、GIF、JPEG是不同的静态图像压缩和编码标准。

 

  第七层 应用层

 

  应用层是最接近终端用户的OSI层,这就意味着OSI应用层与用户之间是通过应用软件直接相互作用的。注意,应用层并非由计算机上运行的实际应用软件组成,而是由向应用程序提供访问网络资源的API(Application Program Interface,应用程序接口)组成,这类应用软件程序超出了OSI模型的范畴。应用层的功能一般包括标识通信伙伴、定义资源的可用性和同步通信。因为可能丢失通信伙伴,应用层必须为传输数据的应用子程序定义通信伙伴的标识和可用性。定义资源可用性时,应用层为了请求通信而必须判定是否有足够的网络资源。在同步通信中,所有应用程序之间的通信都需要应用层的协同操作。

 

  OSI的应用层协议包括文件的传输、访问及管理协议(FTAM) ,以及文件虚拟终端协议(VIP)和公用管理系统信息(CMIP)等。

 

 

  TCP/IP分层模型

 

  TCP/IP分层模型(TCP/IP Layening Model)被称作因特网分层模型(Internet Layering Model)、因特网参考模型(Internet Reference Model)。图2表示了TCP/IP分层模型的四层。

 

  TCP/IP协议被组织成四个概念层,其中有三层对应于ISO参考模型中的相应层。ICP/IP协议族并不包含物理层和数据链路层,因此它不能独立完成整个计算机网络系统的功能,必须与许多其他的协议协同工作。

 

  TCP/IP分层模型的四个协议层分别完成以下的功能:

 

  第一层 网络接口层

 

  网络接口层包括用于协作IP数据在已有网络介质上传输的协议。实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。相反,它定义像地址解析协议(Address Resolution Protocol,ARP)这样的协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。

 

  第二层 网间层

 

  网间层对应于OSI七层参考模型的网络层。本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责数据的包装、寻址和路由。同时还包含网间控制报文协议(Internet Control Message Protocol,ICMP)用来提供网络诊断信息。

 

  第三层 传输层

 

  传输层对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。

 

  第四层 应用层

 

  应用层对应于OSI七层参考模型的应用层和表达层。因特网的应用层协议包括Finger、Whois、FTP(文件传输协议)、Gopher、HTTP(超文本传输协议)、Telent(远程终端协议)、SMTP(简单邮件传送协议)、IRC(因特网中继会话)、NNTP(网络新闻传输协议)等。

OSI七层模型 TCP/IP四层模型 传输的数据

应用层 应用层 数据

表示层 应用层 数据

会话层 应用层 数据

传输层 传输层

网络层 互联网层

数据链路层 网络接口层

物理层 网络接口层 比特流

对应的网络硬件设备的区别和关系:

一、中继器

中继器是位于第1层(OSI参考模型的物理层)的网络设备。当数据离开源在网络上传送时,它是转换为能够沿着网络介质传输的电脉冲或光脉冲的——这些脉冲称为信号(signal)。当信号离开发送工作站时,信号是规划的,而且很容易辨认出来。但是,当信号沿着网络介质进行传送时, 随着经过的线缆越来越长,信号就会变得越来越弱,越来越差。中继器的目的是在比特级别对网络信号进行再生和重定时,从而使得它们能够在网络上传输更长的距离。

二、集线器

集线器的基本功能是信息分发,它把一个端口接收的所有信号向所有端口分发出去,工作在物理层(最底层)。实际就是一种多端口的中继器(将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送)。

三、网桥(Bridge) 

是连接两个局域网的存储转发设备,用它可以完成具有相同或相似体系结构网络系统的连接。

  在集线器组成的局域网里面,大量主机之间的通信都是通过arp广播来分发数据,为了减小在共享环境中的介质争用(也就是冲突),网桥产生了,它的作用是将广播域划分为一个一个小的冲突域,通过寻址和路径选择转发信息,一个网段上的各工作站之间的通信量局限在本网段的范围内,而不会经过网桥流到其他的网段去。可以取得减少通信量的作用,这样便增大了可用的带宽,但是广播域还是没有变。

  网桥工作在第二层数据链路层,将两个LAN连起来,根据MAC地址来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发),并且端口很少(注意与后面的交换机区别)。

  网桥分为本地网桥和远程网桥两大类,本地网桥主要是用来提供同一地理区域内的多个局域网段之间的直接连接。远程网桥则是用于连接不同区域内的局域网段。

四、网关 

网关的功能就是把信息重新进行包装以适应目标网络环境的要求。网关实现了不同的体系结构和环境之间的通信,数据被网关重新转换后,可以从一个网络环境进入另一个不同的网络环境,使各种网络环境能够相互理解、交流对方的数据,在OSI网络层之上的具有协议转换功能设施。

五、交换机

实际上是一种多端口网桥,所以说网桥和交换机都有交换功能。交换机具备自动寻址能力和交换作用,根据所传递信息包的目的地址,将每一信息包通过其拥有的一条高带宽的背部总线和内部交换矩阵,独立地从源端口送至目的端口,避免了和其他端口发生碰撞。目的MAC若不存在,交换机才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。

  看到了网桥的作用,于是人们将其发展为多端口设备,并且整合了集线器的功能,发明了交换机,交换机也是工作在第二层。交换机除了具有桥接(也就是隔绝冲突)和转发数据报之外,还具有其他高级特性:比如说vlan(虚拟局域网),port trunking(连路聚合),spanning tree(生成树),等等特性,高端的交换机还具有路由功能,具体的路由功能将在后面介绍。交换机是一种专用的网络设备,它是基于硬件的,所以具有比基于软件的网桥更高的数据转发能力。

  交换机允许连接在交换机上的设备并行通讯,设备间通讯不会再发生冲突,因此交换机打破了冲突域,交换机每个接口是一个冲突域,不会与其他接口发生通讯冲突。但是交换机和集线器一样不能判断广播数据包,会把广播发送到全部接口,所以交换机和集线器一样连接了一个广播域网络。

  并且有系统的交换机可以记录MAC地址表,发送的数据不会再以广播方式发送到每个接口,而是直接到达目的接口,节省了接口带宽。高端一点的交换机不仅可以记录MAC地址表,还可以划分VLAN(虚拟局域网)来隔离广播,但是VLAN间也同样不能通讯。要使VLAN间能够通讯,必须有三层设备介入。

六、路由器

进行路由的设备

  随着网络的进一步发展,在广泛分布的网络之间,选择路径便是一件麻烦的事情,于是一种专门的网络硬件产生了---路由器。路由器工作在第三层(网络层)之上,其实也涉及第二层以及第一层,但是它的主要用途是选路。路由器的存储器里面存放着路由表,这些表是易失的并且容易改变的。路由表的内容包括到达目的地址的下一跳(next hop)路由地址,不同地址的管理距离,等等。

  路由表内容都是路由器启动之后经过学习得到的。路由器启动之后便根据设定的路由协议与其他路由器交换信息,在交换信息的过程中,学习路由。所以一台路由器虽然是基于硬件的专用网络设备,但是路由器支持的路由算法才是最核心的东西。路由算法有两大类:距离矢量算法(如rip , igrp)以及连路状态算法(如ospf),还有一种平衡混合的算法(如eigrp),是前面两种算法的综合。路由器使用距离矢量算法,判断到达目的地址的优先路径的标准只有一个,那就是跳数,认为具有最小跳数的路径是最有路径,而不理会其带宽,可靠性,时延等因素。并且认为跳数大于15跳的目的地址是不可到达的,这边限制了可路断最优路径,这样可路由的区域便增大了,并且能平衡各条链路之间的流量。

  路由器不仅能像交换机一样隔离冲突域,另外,路由还有一个二层设备不具有的功能,那就是隔绝广播,它可以将广播限制在一个网络之内,进而增大网络之间的带宽。路由器的介入可以使交换机划分的VLAN实现互相通讯。

 

总结:

集线器:纯硬件、用于连接网络终端、不能打破冲突域和广播域。

网 桥:是一个二层设备,用于隔绝冲突,但是不能隔绝广播。常常是基于软件的,现在使用得很少了。

交换机:拥有软件系统、用于连接网络终端、能够打破冲突域,但是不能分割广播域。是一个多端口的二层设备,功能除了网桥所具有的功能之外,还有其特定的高级功能。

路由器:拥有软件系统、用于路径选择,可以打破冲突域也可以分割广播域,是连接大型网络的比备设备。

一般来说网桥不能代替交换机(因为它是单端口的),而网桥和交换机都不能代替网关,它们不能连接两个不同的网络。而网关则可以起网桥的作用。

交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。

而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。

 

常见的相关面试题目汇总:

OSI参考模型的各个层次的划分原则:

1、同一层中的各网络节点都有相同的层次结构,具有同样的功能。

2、同一节点内相邻层之间通过接口(可以是逻辑接口)进行通信。

3、七层结构中的每一层使用下一层提供的服务,并且向其上层提供服务。

4、不同节点的同等层按照协议实现对等层之间的通信。

第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。

在这一层,数据的单位称为比特(bit)。

属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。  

数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

在这一层,数据的单位称为帧(frame)。

数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。

第三层是网络层

在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点,确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。

如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。

在这一层,数据的单位称为数据包(packet)。

网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第四层是处理信息的传输层。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。

传输层协议的代表包括:TCP、UDP、SPX等。

第五层是会话层

这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。

第六层是表示层

这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩,加密和解密等工作都由表示层负责。

第七层应用层,应用层为操作系统或网络应用程序提供访问网络服务的接口。

应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

  通过 OSI 层,信息可以从一台计算机的软件应用程序传输到另一台的应用程序上。例如,计算机 A 上的应用程序要将信息发送到计算机 B 的应用程序,则计算机 A 中的应用程序需要将信息先发送到其应用层(第七层),然后此层将信息发送到表示层(第六层),表示层将数据转送到会话层(第五层),如此继续,直至物理层(第一层)。在物理层,数据被放置在物理网络媒介中并被发送至计算机 B 。计算机 B 的物理层接收来自物理媒介的数据,然后将信息向上发送至数据链路层(第二层),数据链路层再转送给网络层,依次继续直到信息到达计算机 B 的应用层。最后,计算机 B 的应用层再将信息传送给应用程序接收端,从而完成通信过程。下面图示说明了这一过程。

  OSI 的七层运用各种各样的控制信息来和其他计算机系统的对应层进行通信。这些控制信息包含特殊的请求和说明,它们在对应的 OSI 层间进行交换。每一层数据的头和尾是两个携带控制信息的基本形式。

  对于从上一层传送下来的数据,附加在前面的控制信息称为头,附加在后面的控制信息称为尾。然而,在对来自上一层数据增加协议头和协议尾,对一个 OSI 层来说并不是必需的。

  当数据在各层间传送时,每一层都可以在数据上增加头和尾,而这些数据已经包含了上一层增加的头和尾。协议头包含了有关层与层间的通信信息。头、尾以及数据是相关联的概念,它们取决于分析信息单元的协议层。例如,传输层头包含了只有传输层可以看到的信息,传输层下面的其他层只将此头作为数据的一部分传递。对于网络层,一个信息单元由第三层的头和数据组成。对于数据链路层,经网络层向下传递的所有信息即第三层头和数据都被看作是数据。换句话说,在给定的某一 OSI 层,信息单元的数据部分包含来自于所有上层的头和尾以及数据,这称之为封装。

  例如,如果计算机 A 要将应用程序中的某数据发送至计算机 B ,数据首先传送至应用层。 计算机 A 的应用层通过在数据上添加协议头来和计算机 B 的应用层通信。所形成的信息单元包含协议头、数据、可能还有协议尾,被发送至表示层,表示层再添加为计算机 B 的表示层所理解的控制信息的协议头。信息单元的大小随着每一层协议头和协议尾的添加而增加,这些协议头和协议尾包含了计算机 B 的对应层要使用的控制信息。在物理层,整个信息单元通过网络介质传输。

  计算机 B 中的物理层收到信息单元并将其传送至数据链路层;然后 B 中的数据链路层读取计算机 A 的数据链路层添加的协议头中的控制信息;然后去除协议头和协议尾,剩余部分被传送至网络层。每一层执行相同的动作:从对应层读取协议头和协议尾,并去除,再将剩余信息发送至上一层。应用层执行完这些动作后,数据就被传送至计算机 B 中的应用程序,这些数据和计算机 A 的应用程序所发送的完全相同。

  一个 OSI 层与另一层之间的通信是利用第二层提供的服务完成的。相邻层提供的服务帮助一 OSI 层与另一计算机系统的对应层进行通信。一个 OSI 模型的特定层通常是与另外三个 OSI 层联系:与之直接相邻的上一层和下一层,还有目标联网计算机系统的对应层。例如,计算机 A 的数据链路层应与其网络层,物理层以及计算机 B 的数据链路层进行通信

确定连接设备的电气特性和物理特性等功能。

b 数据链路层 负责在网络节点间的线路上通过检测、流量控制和重发等手段,无差错地传送以帧为单位的数据。为做到这一点,在每一帧中必须同时带有同步、地址、差错控制及流量控制等控制信息。

c 网络层 为了将数据分组从源(源端系统)送到目的地(目标端系统),网络层的任务就是选择合适的路由和交换节点,使源的传输层传下来的分组信息能够正确无误地按照地址找到目的地,并交付给相应的传输层,即完成网络的寻址功能。

d 传输层 传输层是高低层之间衔接的接口层。数据传输的单位是报文,当报文较长时将它分割成若干分组,然后交给网络层进行传输。传输层是计算机网络协议分层中的最关键一层,该层以上各层将不再管理信息传输问题。

e 会话层 该层对传输的报文提供同步管理服务。在两个不同系统的互相通信的应用进程之间建立、组织和协调交互。例如,确定是双工还是半双工工作。

f 表示层 该层的主要任务是把所传送的数据的抽象语法变换为传送语法,即把不同计算机内部的不同表示形式转换成网络通信中的标准表示形式。此外,对传送的数据加密(或解密)、正文压缩(或还原)也是表示层的任务。

g 应用层 该层直接面向用户,是OSI中的最高层。它的主要任务是为用户提供应用的接口,即提供不同计算机间的文件传送、访问与管理,电子邮件的内容处理,不同计算机通过网络交互访问的虚拟终端功能等。

2、TCP/IP

a 网络接口层 这是TCP/IP协议的最低一层,包括有多种逻辑链路控制和媒体访问协议。网络接口层的功能是接收IP数据报并通过特定的网络进行传输,或从网络上接收物理帧,抽取出IP数据报并转交给网际层。

b 网际网层(IP层)  该层包括以下协议:IP(网际协议)、ICMP(Internet Control Message Protocol,因特网控制报文协议)、ARP(Address Resolution Protocol,地址解析协议)、RARP(Reverse Address Resolution Protocol,反向地址解析协议)。该层负责相同或不同网络中计算机之间的通信,主要处理数据报和路由。在IP层中,ARP协议用于将IP地址转换成物理地址,RARP协议用于将物理地址转换成IP地址,ICMP协议用于报告差错和传送控制信息。IP协议在TCP/IP协议组中处于核心地位。

c 传输层  该层提供TCP(传输控制协议)和UDP(User Datagram Protocol,用户数据报协议)两个协议,它们都建立在IP协议的基础上,其中TCP提供可靠的面向连接服务,UDP提供简单的无连接服务。传输层提供端到端,即应用程序之间的通信,主要功能是数据格式化、数据确认和丢失重传等。

d 应用层  TCP/IP协议的应用层相当于OSI模型的会话层、表示层和应用层,它向用户提供一组常用的应用层协议其中包括:Telnet、SMTP、DNS等。此外,在应用层中还包含有用户应用程序,它们均是建立在TCP/IP协议组之上的专用程序。

 

3、OSI参考模型和TCP/IP参考模型的区别:

a OSI模型有7层,TCP/IP只有4层;

b OSI先于协议出现,因此不会偏向于任何一组特定的协议,通用性更强,但有些功能不知该放哪一层上,因此不得

不加入一些子层;TCP/IP后于协议出现,仅是将已有协议的一个描述,因此两者配合的非常好;但他不适合其他的

协议栈,不容易描述其他非TCP/IP的网络;

c OSI中网络层同时支持无连接和面向连接的通信,但在传输层上只支持面向连接的通信;TCP/IP中网络层只支持无

连接通信,传输层同时支持两种通信;

d 在技术发生变化时,OSI模型比TCP/IP模型中的协议更容易被替换。

----------------------------------------

Q2:请你详细的解释一下IP协议的定义,在哪个层上面,主要有什么作用? TCP与UDP呢? 

解:与IP协议配套使用的还有三个协议:

ARP-地址解析协议

RARP-逆地址解析协议

ICMP-因特网控制报文协议ICMP

IP协议-网际协议

IP地址、IP包头

----------------------------------------

Q3:请问交换机和路由器分别的实现原理是什么?分别在哪个层次上面实现的?

将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。根据中继系统

所在的层次,可以有以下五种中继系统:

1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。

2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。

3.网络层(第三层,层L3)中继系统,即路由器(router)。

4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。

5.在网络层以上的中继系统,即网关(gateway).

当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。高层网关由于比较复杂,目前使用得较少。因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。本文主要阐述交换机和路由器及其区别。

 

第二层交换机和路由器的区别:

传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。因特网的路由选择协议:内部网关协议IGP和外部网关协议EGP第三层交换机和路由器的区别:在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广播应用。

 

1:请你分别划划OSI的七层网络结构图,和TCP/IP的五层结构图?

OSI的七层网络结构图,和TCP/IP的五层结构图

OSI

OSI是Open System Interconnect的缩写,意为开放式系统互联。在OSI出现之前,计算机网络中存在众多的体系结构,其中以IBM公司的SNA(系统网络体系结构)和DEC公司的DNA(Digital Network Architecture)数字网络体系结构最为著名。为了解决不同体系结构的网络的互联问题,国际标准化组织ISO(注意不要与OSI搞混))于1981年制定了开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM)。这个模型把网络通信的工作分为7层,它们由低到高分别是物理层(Physical Layer),数据链路层(Data Link Layer),网络层(Network Layer),传输层(Transport Layer),会话层(Session Layer),表示层(Presen tation Layer)和应用层(Application Layer)。第一层到第三层属于OSI参考模型的低三层,负责创建网络通信连接的链路;第四层到第七层为OSI参考模型的高四层,具体负责端到端的数据通信。每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持,而网络通信则可以自上而下(在发送端)或者自下而上(在接收端)双向进行。当然并不是每一通信都需要经过OSI的全部七层,有的甚至只需要双方对应的某一层即可。物理接口之间的转接,以及中继器与中继器之间的连接就只需在物理层中进行即可;而路由器与路由器之间的连接则只需经过网络层以下的三层即可。总的来说,双方的通信是在对等层次上进行的,不能在不对称层次上进行通信。