二叉查找树
二叉查找树及操作
二叉查找树Binary Search Tree
在ADT Map的实现方案中,可以采用不同的数据结构和搜索算法来保存和查找key,前面已经实现两个方案
有序表数据结构+二分搜索算法
散列表数据结构+散列及冲突解决算法
二叉查找树BST的性质
比父节点小的key都出现在左子树,比父节点大的key都出现在右子树
按照70, 31, 93, 94, 14, 23, 73的顺序插入
首先插入的70成为树根
31比70小,放到左子节点
93比70大,放到右子节点
etc.
注意:插入的顺序不同,生成的BST也不同
二叉查找树的实现:节点和链接结构
需要用到BST和TreeNode两个类
TreeNode类
class TreeNode:
def __init__(self,key,val,left=None,right=None,parent=None):
self.key = key
self.payload = val
self.leftChild = left
self.rightChild = right
self.parent = parent
def hasLeftChild(self):
return self.leftChild
def hasRightChild(self):
return self.rightChild
def isLeftChild(self):
return self.parent and self.parent.leftChild == self
def isRightChild(self):
return self.parent and self.parent.rightChild == self
def isRoot(self):
return not self.parent
def isLeaf(self):
return not (self.rightChild or self.leftChild)
def hasAnyChildren(self):
return self.rightChild or self.leftChild
def hasBothChildren(self):
return self.rightChild and self.leftChild
def spliceOut(self):
if self.isLeaf():
if self.isLeftChild():
self.parent.leftChild = None
else:
self.parent.rightChild = None
elif self.hasAnyChildren():
if self.hasLeftChild():
if self.isLeftChild():
self.parent.leftChild = self.leftChild
else:
self.parent.rightChild = self.leftChild
self.leftChild.parent = self.parent
else:
if self.isLeftChild():
self.parent.leftChild = self.rightChild
else:
self.parent.rightChild = self.rightChild
self.rightChild.parent = self.parent
def findSuccessor(self):
succ = None
if self.hasRightChild():
succ = self.rightChild.findMin()
else:
if self.parent:
if self.isLeftChild():
succ = self.parent
else:
self.parent.rightChild = None
succ = self.parent.findSuccessor()
self.parent.rightChild = self
return succ
def findMin(self):
current = self
while current.hasLeftChild():
current = current.leftChild
return current
def replaceNodeData(self,key,value,lc,rc):
self.key = key
self.payload = value
self.leftChild = lc
self.rightChild = rc
if self.hasLeftChild():
self.leftChild.parent = self
if self.hasRightChild():
self.rightChild.parent = self
二叉搜索树的实现
BST.put方法
插入key构造BST
首先要看BST是否为空,如果一个节点也没有,那么key成为根节点root
否则,就调用一个递归函数_put(key, val, root)来放置key
_put辅助方法
如果key比currentNode小,那么_put到左子树
但如果没有左子树,那么key就成为左子树
如果key比currentNode大,那么_put到右子树
但如果没有右子树,那么key就成为右子树
索引赋值
随手把__setitem__做了
特殊方法(前后双下划线)
BST.put图示
BST.get方法
在树中找到key所在的节点取到payload
索引和归属判断
__getitem__特殊方法
实现val = myZipTree[‘PKU’]
__contains__特殊方法
实现’PKU’ in myZipTree的归属判断运算符in
迭代器
我们可以用for循环枚举字典中的所有key
ADT Map也应该有这种功能
特殊方法__iter__可以用来实现for迭代
BST类中的__iter__方法直接调用了TreeNode中的同名方法
迭代器函数中用了for迭代,实际上是递归函数
yield是对每次迭代的返回值
中序遍历的迭代
BST.delete方法
有增有减,最复杂的就是delete方法:
用_get找到要删除的节点,然后调用remove来删除,找不到则提示错误
__delitem__特殊方法
实现del myZipTree[‘PKU’]这样的语句操作
在delete中,最复杂的是找到key对应的节点之后的remove节点方法
BST.remove方法
从BST中remove一个节点,还要求仍然保持BST的性质,分为下3种情形:
这个节点没有子节点
这个节点有1个子节点
这个节点有2个子节点
没有节点的情况好办:直接删除
if currentNode.isLeaf():
if currentNode == currentNode.parent.leafChild:
currentNode.parent.leftChild = None
else:
currentNode.parent.rightChild = None
第二种情况:被删节点有1个子节点
将这个唯一子节点上移,替换掉被删节点的位置
但替换操作需要区分几种情况:
被删节点的子节点是左还是右
被删节点本身是其父节点的左还是右
被删节点本身是根节点
else: # this node has one child
if currentNode.hasLeftChild():
if currentNode.isLeftChild():
currentNode.leftChild.parent = currentNode.parent
currentNode.parent.leftChild = currentNode.leftChild
elif currentNode.isRightChild():
currentNode.leftChild.parent = currentNode.parent
currentNode.parent.rightChild = currentNode.leftChild
else:
currentNode.replaceNodeData(currentNode.leftChild.key,
currentNode.leftChild.payload,
currentNode.leftChild.leftChild,
currentNode.leftChild.rightChild)
else:
if currentNode.isLeftChild():
currentNode.rightChild.parent = currentNode.parent
currentNode.parent.leftChild = currentNode.rightChild
elif currentNode.isRightChild():
currentNode.rightChild.parent = currentNode.parent
currentNode.parent.rightChild = currentNode.rightChild
else:
currentNode.replaceNodeData(currentNode.rightChild.key,
currentNode.rightChild.payload,
currentNode.rightChild.leftChild,
currentNode.rightChild.rightChild)
第三种情况最复杂:被删除节点有两个子节点
这时无法简单地将某个子节点上移替换被删节点
但可以找到另一个合适的节点来替换被删节点,
这个合适节点就是被删节点的下一个key值节点,
即被删节点右子树中最小的那个,称为“后继”
可以肯定这个后继节点最多只有1个子节点(本身是叶节点,或仅有右子树)
将这个后继节点摘出来(也就是删除),替换掉被删节点。
完整代码:
class TreeNode:
def __init__(self,key,val,left=None,right=None,parent=None):
self.key = key
self.payload = val
self.leftChild = left
self.rightChild = right
self.parent = parent
def hasLeftChild(self):
return self.leftChild
def hasRightChild(self):
return self.rightChild
def isLeftChild(self):
return self.parent and self.parent.leftChild == self
def isRightChild(self):
return self.parent and self.parent.rightChild == self
def isRoot(self):
return not self.parent
def isLeaf(self):
return not (self.rightChild or self.leftChild)
def hasAnyChildren(self):
return self.rightChild or self.leftChild
def hasBothChildren(self):
return self.rightChild and self.leftChild
def spliceOut(self):
if self.isLeaf():
if self.isLeftChild():
self.parent.leftChild = None
else:
self.parent.rightChild = None
elif self.hasAnyChildren():
if self.hasLeftChild():
if self.isLeftChild():
self.parent.leftChild = self.leftChild
else:
self.parent.rightChild = self.leftChild
self.leftChild.parent = self.parent
else:
if self.isLeftChild():
self.parent.leftChild = self.rightChild
else:
self.parent.rightChild = self.rightChild
self.rightChild.parent = self.parent
def findSuccessor(self):
succ = None
if self.hasRightChild():
succ = self.rightChild.findMin()
else:
if self.parent:
if self.isLeftChild():
succ = self.parent
else:
self.parent.rightChild = None
succ = self.parent.findSuccessor()
self.parent.rightChild = self
return succ
def findMin(self):
current = self
while current.hasLeftChild():
current = current.leftChild
return current
def replaceNodeData(self,key,value,lc,rc):
self.key = key
self.payload = value
self.leftChild = lc
self.rightChild = rc
if self.hasLeftChild():
self.leftChild.parent = self
if self.hasRightChild():
self.rightChild.parent = self
class BinarySearchTree:
def __init__(self):
self.root = None
self.size = 0
def length(self):
return self.size
def __len__(self):
return self.size
def put(self,key,val):
if self.root:
self._put(key,val,self.root)
else:
self.root = TreeNode(key,val)
self.size = self.size + 1
def _put(self,key,val,currentNode):
if key < currentNode.key:
if currentNode.hasLeftChild():
self._put(key,val,currentNode.leftChild)
else:
currentNode.leftChild = TreeNode(key,val,parent=currentNode)
else:
if currentNode.hasRightChild():
self._put(key,val,currentNode.rightChild)
else:
currentNode.rightChild = TreeNode(key,val,parent=currentNode)
def __setitem__(self,k,v):
self.put(k,v)
def get(self,key):
if self.root:
res = self._get(key,self.root)
if res:
return res.payload
else:
return None
else:
return None
def _get(self,key,currentNode):
if not currentNode:
return None
elif currentNode.key == key:
return currentNode
elif key < currentNode.key:
return self._get(key,currentNode.leftChild)
else:
return self._get(key,currentNode.rightChild)
def __getitem__(self,key):
return self.get(key)
def __contains__(self,key):
if self._get(key,self.root):
return True
else:
return False
def delete(self,key):
if self.size > 1:
nodeToRemove = self._get(key,self.root)
if nodeToRemove:
self.remove(nodeToRemove)
self.size = self.size-1
else:
raise KeyError('Error, key not in tree')
elif self.size == 1 and self.root.key == key:
self.root = None
self.size = self.size - 1
else:
raise KeyError('Error, key not in tree')
def __delitem__(self,key):
self.delete(key)
def remove(self,currentNode):
if currentNode.isLeaf(): #leaf
if currentNode == currentNode.parent.leftChild:
currentNode.parent.leftChild = None
else:
currentNode.parent.rightChild = None
elif currentNode.hasBothChildren(): #interior
succ = currentNode.findSuccessor()
succ.spliceOut()
currentNode.key = succ.key
currentNode.payload = succ.payload
else: # this node has one child
if currentNode.hasLeftChild():
if currentNode.isLeftChild():
currentNode.leftChild.parent = currentNode.parent
currentNode.parent.leftChild = currentNode.leftChild
elif currentNode.isRightChild():
currentNode.leftChild.parent = currentNode.parent
currentNode.parent.rightChild = currentNode.leftChild
else:
currentNode.replaceNodeData(currentNode.leftChild.key,
currentNode.leftChild.payload,
currentNode.leftChild.leftChild,
currentNode.leftChild.rightChild)
else:
if currentNode.isLeftChild():
currentNode.rightChild.parent = currentNode.parent
currentNode.parent.leftChild = currentNode.rightChild
elif currentNode.isRightChild():
currentNode.rightChild.parent = currentNode.parent
currentNode.parent.rightChild = currentNode.rightChild
else:
currentNode.replaceNodeData(currentNode.rightChild.key,
currentNode.rightChild.payload,
currentNode.rightChild.leftChild,
currentNode.rightChild.rightChild)
mytree = BinarySearchTree()
mytree[3]="red"
mytree[4]="blue"
mytree[6]="yellow"
mytree[2]="at"
print(mytree[6])
print(mytree[2])
del mytree[3]
print(mytree[3])
上一篇: Songs Compression
下一篇: windows命令行下编译C语言