Python实现Keras搭建神经网络训练分类模型教程
程序员文章站
2022-07-02 20:52:35
我就废话不多说了,大家还是直接看代码吧~注释讲解版:# classifier exampleimport numpy as np# for reproducibilitynp.random.seed(...
我就废话不多说了,大家还是直接看代码吧~
注释讲解版:
# classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import sequential from keras.layers import dense, activation from keras.optimizers import rmsprop # 程序中用到的数据是经典的手写体识别mnist数据集 # download the mnist to the path if it is the first time to be called # x shape (60,000 28x28), y # (x_train, y_train), (x_test, y_test) = mnist.load_data() # 下载minst.npz: # 链接: https://pan.baidu.com/s/1b2ppkdodzdjxivgmyooqsa # 提取码: y5ir # 将下载好的minst.npz放到当前目录下 path='./mnist.npz' f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() # data pre-processing # 数据预处理 # normalize # x shape (60,000 28x28),表示输入数据 x 是个三维的数据 # 可以理解为 60000行数据,每一行是一张28 x 28 的灰度图片 # x_train.reshape(x_train.shape[0], -1)表示:只保留第一维,其余的纬度,不管多少纬度,重新排列为一维 # 参数-1就是不知道行数或者列数多少的情况下使用的参数 # 所以先确定除了参数-1之外的其他参数,然后通过(总参数的计算) / (确定除了参数-1之外的其他参数) = 该位置应该是多少的参数 # 这里用-1是偷懒的做法,等同于 28*28 # reshape后的数据是:共60000行,每一行是784个数据点(feature) # 输入的 x 变成 60,000*784 的数据,然后除以 255 进行标准化 # 因为每个像素都是在 0 到 255 之间的,标准化之后就变成了 0 到 1 之间 x_train = x_train.reshape(x_train.shape[0], -1) / 255 x_test = x_test.reshape(x_test.shape[0], -1) / 255 # 分类标签编码 # 将y转化为one-hot vector y_train = np_utils.to_categorical(y_train, num_classes = 10) y_test = np_utils.to_categorical(y_test, num_classes = 10) # another way to build your neural net # 建立神经网络 # 应用了2层的神经网络,前一层的激活函数用的是relu,后一层的激活函数用的是softmax #32是输出的维数 model = sequential([ dense(32, input_dim=784), activation('relu'), dense(10), activation('softmax') ]) # another way to define your optimizer # 优化函数 # 优化算法用的是rmsprop rmsprop = rmsprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # we add metrics to get more results you want to see # 不自己定义,直接用内置的优化器也行,optimizer='rmsprop' #激活模型:接下来用 model.compile 激励神经网络 model.compile( optimizer=rmsprop, loss='categorical_crossentropy', metrics=['accuracy'] ) print('training------------') # another way to train the model # 训练模型 # 上一个程序是用train_on_batch 一批一批的训练 x_train, y_train # 默认的返回值是 cost,每100步输出一下结果 # 输出的样式与上一个程序的有所不同,感觉用model.fit()更清晰明了 # 上一个程序是python实现keras搭建神经网络训练回归模型: # https://blog.csdn.net/weixin_45798684/article/details/106503685 model.fit(x_train, y_train, nb_epoch=2, batch_size=32) print('\ntesting------------') # evaluate the model with the metrics we defined earlier # 测试 loss, accuracy = model.evaluate(x_test, y_test) print('test loss:', loss) print('test accuracy:', accuracy)
运行结果:
using tensorflow backend. training------------ epoch 1/2 32/60000 [..............................] - eta: 5:03 - loss: 2.4464 - accuracy: 0.0625 864/60000 [..............................] - eta: 14s - loss: 1.8023 - accuracy: 0.4850 1696/60000 [..............................] - eta: 9s - loss: 1.5119 - accuracy: 0.6002 2432/60000 [>.............................] - eta: 7s - loss: 1.3151 - accuracy: 0.6637 3200/60000 [>.............................] - eta: 6s - loss: 1.1663 - accuracy: 0.7056 3968/60000 [>.............................] - eta: 5s - loss: 1.0533 - accuracy: 0.7344 4704/60000 [=>............................] - eta: 5s - loss: 0.9696 - accuracy: 0.7564 5408/60000 [=>............................] - eta: 5s - loss: 0.9162 - accuracy: 0.7681 6112/60000 [==>...........................] - eta: 5s - loss: 0.8692 - accuracy: 0.7804 6784/60000 [==>...........................] - eta: 4s - loss: 0.8225 - accuracy: 0.7933 7424/60000 [==>...........................] - eta: 4s - loss: 0.7871 - accuracy: 0.8021 8128/60000 [===>..........................] - eta: 4s - loss: 0.7546 - accuracy: 0.8099 8960/60000 [===>..........................] - eta: 4s - loss: 0.7196 - accuracy: 0.8183 9568/60000 [===>..........................] - eta: 4s - loss: 0.6987 - accuracy: 0.8230 10144/60000 [====>.........................] - eta: 4s - loss: 0.6812 - accuracy: 0.8262 10784/60000 [====>.........................] - eta: 4s - loss: 0.6640 - accuracy: 0.8297 11456/60000 [====>.........................] - eta: 4s - loss: 0.6462 - accuracy: 0.8329 12128/60000 [=====>........................] - eta: 4s - loss: 0.6297 - accuracy: 0.8366 12704/60000 [=====>........................] - eta: 4s - loss: 0.6156 - accuracy: 0.8405 13408/60000 [=====>........................] - eta: 3s - loss: 0.6009 - accuracy: 0.8430 14112/60000 [======>.......................] - eta: 3s - loss: 0.5888 - accuracy: 0.8457 14816/60000 [======>.......................] - eta: 3s - loss: 0.5772 - accuracy: 0.8487 15488/60000 [======>.......................] - eta: 3s - loss: 0.5685 - accuracy: 0.8503 16192/60000 [=======>......................] - eta: 3s - loss: 0.5576 - accuracy: 0.8534 16896/60000 [=======>......................] - eta: 3s - loss: 0.5477 - accuracy: 0.8555 17600/60000 [=======>......................] - eta: 3s - loss: 0.5380 - accuracy: 0.8576 18240/60000 [========>.....................] - eta: 3s - loss: 0.5279 - accuracy: 0.8600 18976/60000 [========>.....................] - eta: 3s - loss: 0.5208 - accuracy: 0.8617 19712/60000 [========>.....................] - eta: 3s - loss: 0.5125 - accuracy: 0.8634 20416/60000 [=========>....................] - eta: 3s - loss: 0.5046 - accuracy: 0.8654 21088/60000 [=========>....................] - eta: 3s - loss: 0.4992 - accuracy: 0.8669 21792/60000 [=========>....................] - eta: 3s - loss: 0.4932 - accuracy: 0.8684 22432/60000 [==========>...................] - eta: 3s - loss: 0.4893 - accuracy: 0.8693 23072/60000 [==========>...................] - eta: 2s - loss: 0.4845 - accuracy: 0.8703 23648/60000 [==========>...................] - eta: 2s - loss: 0.4800 - accuracy: 0.8712 24096/60000 [===========>..................] - eta: 2s - loss: 0.4776 - accuracy: 0.8718 24576/60000 [===========>..................] - eta: 2s - loss: 0.4733 - accuracy: 0.8728 25056/60000 [===========>..................] - eta: 2s - loss: 0.4696 - accuracy: 0.8736 25568/60000 [===========>..................] - eta: 2s - loss: 0.4658 - accuracy: 0.8745 26080/60000 [============>.................] - eta: 2s - loss: 0.4623 - accuracy: 0.8753 26592/60000 [============>.................] - eta: 2s - loss: 0.4600 - accuracy: 0.8756 27072/60000 [============>.................] - eta: 2s - loss: 0.4566 - accuracy: 0.8763 27584/60000 [============>.................] - eta: 2s - loss: 0.4532 - accuracy: 0.8771 28032/60000 [=============>................] - eta: 2s - loss: 0.4513 - accuracy: 0.8775 28512/60000 [=============>................] - eta: 2s - loss: 0.4477 - accuracy: 0.8784 28992/60000 [=============>................] - eta: 2s - loss: 0.4464 - accuracy: 0.8786 29472/60000 [=============>................] - eta: 2s - loss: 0.4439 - accuracy: 0.8791 29952/60000 [=============>................] - eta: 2s - loss: 0.4404 - accuracy: 0.8800 30464/60000 [==============>...............] - eta: 2s - loss: 0.4375 - accuracy: 0.8807 30784/60000 [==============>...............] - eta: 2s - loss: 0.4349 - accuracy: 0.8813 31296/60000 [==============>...............] - eta: 2s - loss: 0.4321 - accuracy: 0.8820 31808/60000 [==============>...............] - eta: 2s - loss: 0.4301 - accuracy: 0.8827 32256/60000 [===============>..............] - eta: 2s - loss: 0.4279 - accuracy: 0.8832 32736/60000 [===============>..............] - eta: 2s - loss: 0.4258 - accuracy: 0.8838 33280/60000 [===============>..............] - eta: 2s - loss: 0.4228 - accuracy: 0.8844 33920/60000 [===============>..............] - eta: 2s - loss: 0.4195 - accuracy: 0.8849 34560/60000 [================>.............] - eta: 2s - loss: 0.4179 - accuracy: 0.8852 35104/60000 [================>.............] - eta: 2s - loss: 0.4165 - accuracy: 0.8854 35680/60000 [================>.............] - eta: 2s - loss: 0.4139 - accuracy: 0.8860 36288/60000 [=================>............] - eta: 2s - loss: 0.4111 - accuracy: 0.8870 36928/60000 [=================>............] - eta: 2s - loss: 0.4088 - accuracy: 0.8874 37504/60000 [=================>............] - eta: 2s - loss: 0.4070 - accuracy: 0.8878 38048/60000 [==================>...........] - eta: 1s - loss: 0.4052 - accuracy: 0.8882 38656/60000 [==================>...........] - eta: 1s - loss: 0.4031 - accuracy: 0.8888 39264/60000 [==================>...........] - eta: 1s - loss: 0.4007 - accuracy: 0.8894 39840/60000 [==================>...........] - eta: 1s - loss: 0.3997 - accuracy: 0.8896 40416/60000 [===================>..........] - eta: 1s - loss: 0.3978 - accuracy: 0.8901 40960/60000 [===================>..........] - eta: 1s - loss: 0.3958 - accuracy: 0.8906 41504/60000 [===================>..........] - eta: 1s - loss: 0.3942 - accuracy: 0.8911 42016/60000 [====================>.........] - eta: 1s - loss: 0.3928 - accuracy: 0.8915 42592/60000 [====================>.........] - eta: 1s - loss: 0.3908 - accuracy: 0.8920 43168/60000 [====================>.........] - eta: 1s - loss: 0.3889 - accuracy: 0.8924 43744/60000 [====================>.........] - eta: 1s - loss: 0.3868 - accuracy: 0.8931 44288/60000 [=====================>........] - eta: 1s - loss: 0.3864 - accuracy: 0.8931 44832/60000 [=====================>........] - eta: 1s - loss: 0.3842 - accuracy: 0.8938 45408/60000 [=====================>........] - eta: 1s - loss: 0.3822 - accuracy: 0.8944 45984/60000 [=====================>........] - eta: 1s - loss: 0.3804 - accuracy: 0.8949 46560/60000 [======================>.......] - eta: 1s - loss: 0.3786 - accuracy: 0.8953 47168/60000 [======================>.......] - eta: 1s - loss: 0.3767 - accuracy: 0.8958 47808/60000 [======================>.......] - eta: 1s - loss: 0.3744 - accuracy: 0.8963 48416/60000 [=======================>......] - eta: 1s - loss: 0.3732 - accuracy: 0.8966 48928/60000 [=======================>......] - eta: 0s - loss: 0.3714 - accuracy: 0.8971 49440/60000 [=======================>......] - eta: 0s - loss: 0.3701 - accuracy: 0.8974 50048/60000 [========================>.....] - eta: 0s - loss: 0.3678 - accuracy: 0.8979 50688/60000 [========================>.....] - eta: 0s - loss: 0.3669 - accuracy: 0.8983 51264/60000 [========================>.....] - eta: 0s - loss: 0.3654 - accuracy: 0.8988 51872/60000 [========================>.....] - eta: 0s - loss: 0.3636 - accuracy: 0.8992 52608/60000 [=========================>....] - eta: 0s - loss: 0.3618 - accuracy: 0.8997 53376/60000 [=========================>....] - eta: 0s - loss: 0.3599 - accuracy: 0.9003 54048/60000 [==========================>...] - eta: 0s - loss: 0.3583 - accuracy: 0.9006 54560/60000 [==========================>...] - eta: 0s - loss: 0.3568 - accuracy: 0.9010 55296/60000 [==========================>...] - eta: 0s - loss: 0.3548 - accuracy: 0.9016 56064/60000 [===========================>..] - eta: 0s - loss: 0.3526 - accuracy: 0.9021 56736/60000 [===========================>..] - eta: 0s - loss: 0.3514 - accuracy: 0.9026 57376/60000 [===========================>..] - eta: 0s - loss: 0.3499 - accuracy: 0.9029 58112/60000 [============================>.] - eta: 0s - loss: 0.3482 - accuracy: 0.9033 58880/60000 [============================>.] - eta: 0s - loss: 0.3459 - accuracy: 0.9039 59584/60000 [============================>.] - eta: 0s - loss: 0.3444 - accuracy: 0.9043 60000/60000 [==============================] - 5s 87us/step - loss: 0.3435 - accuracy: 0.9046 epoch 2/2 32/60000 [..............................] - eta: 11s - loss: 0.0655 - accuracy: 1.0000 736/60000 [..............................] - eta: 4s - loss: 0.2135 - accuracy: 0.9389 1408/60000 [..............................] - eta: 4s - loss: 0.2217 - accuracy: 0.9361 1984/60000 [..............................] - eta: 4s - loss: 0.2316 - accuracy: 0.9390 2432/60000 [>.............................] - eta: 4s - loss: 0.2280 - accuracy: 0.9379 3040/60000 [>.............................] - eta: 4s - loss: 0.2374 - accuracy: 0.9368 3808/60000 [>.............................] - eta: 4s - loss: 0.2251 - accuracy: 0.9386 4576/60000 [=>............................] - eta: 4s - loss: 0.2225 - accuracy: 0.9379 5216/60000 [=>............................] - eta: 4s - loss: 0.2208 - accuracy: 0.9377 5920/60000 [=>............................] - eta: 4s - loss: 0.2173 - accuracy: 0.9383 6656/60000 [==>...........................] - eta: 4s - loss: 0.2217 - accuracy: 0.9370 7392/60000 [==>...........................] - eta: 4s - loss: 0.2224 - accuracy: 0.9360 8096/60000 [===>..........................] - eta: 4s - loss: 0.2234 - accuracy: 0.9363 8800/60000 [===>..........................] - eta: 3s - loss: 0.2235 - accuracy: 0.9358 9408/60000 [===>..........................] - eta: 3s - loss: 0.2196 - accuracy: 0.9365 10016/60000 [====>.........................] - eta: 3s - loss: 0.2207 - accuracy: 0.9363 10592/60000 [====>.........................] - eta: 3s - loss: 0.2183 - accuracy: 0.9369 11168/60000 [====>.........................] - eta: 3s - loss: 0.2177 - accuracy: 0.9377 11776/60000 [====>.........................] - eta: 3s - loss: 0.2154 - accuracy: 0.9385 12544/60000 [=====>........................] - eta: 3s - loss: 0.2152 - accuracy: 0.9393 13216/60000 [=====>........................] - eta: 3s - loss: 0.2163 - accuracy: 0.9390 13920/60000 [=====>........................] - eta: 3s - loss: 0.2155 - accuracy: 0.9391 14624/60000 [======>.......................] - eta: 3s - loss: 0.2150 - accuracy: 0.9391 15424/60000 [======>.......................] - eta: 3s - loss: 0.2143 - accuracy: 0.9398 16032/60000 [=======>......................] - eta: 3s - loss: 0.2122 - accuracy: 0.9405 16672/60000 [=======>......................] - eta: 3s - loss: 0.2096 - accuracy: 0.9409 17344/60000 [=======>......................] - eta: 3s - loss: 0.2091 - accuracy: 0.9411 18112/60000 [========>.....................] - eta: 3s - loss: 0.2086 - accuracy: 0.9416 18784/60000 [========>.....................] - eta: 3s - loss: 0.2084 - accuracy: 0.9418 19392/60000 [========>.....................] - eta: 3s - loss: 0.2076 - accuracy: 0.9418 20000/60000 [=========>....................] - eta: 3s - loss: 0.2067 - accuracy: 0.9421 20608/60000 [=========>....................] - eta: 3s - loss: 0.2071 - accuracy: 0.9419 21184/60000 [=========>....................] - eta: 3s - loss: 0.2056 - accuracy: 0.9423 21856/60000 [=========>....................] - eta: 3s - loss: 0.2063 - accuracy: 0.9419 22624/60000 [==========>...................] - eta: 2s - loss: 0.2059 - accuracy: 0.9421 23328/60000 [==========>...................] - eta: 2s - loss: 0.2056 - accuracy: 0.9422 23936/60000 [==========>...................] - eta: 2s - loss: 0.2051 - accuracy: 0.9423 24512/60000 [===========>..................] - eta: 2s - loss: 0.2041 - accuracy: 0.9424 25248/60000 [===========>..................] - eta: 2s - loss: 0.2036 - accuracy: 0.9426 26016/60000 [============>.................] - eta: 2s - loss: 0.2031 - accuracy: 0.9424 26656/60000 [============>.................] - eta: 2s - loss: 0.2035 - accuracy: 0.9422 27360/60000 [============>.................] - eta: 2s - loss: 0.2050 - accuracy: 0.9417 28128/60000 [=============>................] - eta: 2s - loss: 0.2045 - accuracy: 0.9418 28896/60000 [=============>................] - eta: 2s - loss: 0.2046 - accuracy: 0.9418 29536/60000 [=============>................] - eta: 2s - loss: 0.2052 - accuracy: 0.9417 30208/60000 [==============>...............] - eta: 2s - loss: 0.2050 - accuracy: 0.9417 30848/60000 [==============>...............] - eta: 2s - loss: 0.2046 - accuracy: 0.9419 31552/60000 [==============>...............] - eta: 2s - loss: 0.2037 - accuracy: 0.9421 32224/60000 [===============>..............] - eta: 2s - loss: 0.2043 - accuracy: 0.9420 32928/60000 [===============>..............] - eta: 2s - loss: 0.2041 - accuracy: 0.9420 33632/60000 [===============>..............] - eta: 2s - loss: 0.2035 - accuracy: 0.9422 34272/60000 [================>.............] - eta: 1s - loss: 0.2029 - accuracy: 0.9423 34944/60000 [================>.............] - eta: 1s - loss: 0.2030 - accuracy: 0.9423 35648/60000 [================>.............] - eta: 1s - loss: 0.2027 - accuracy: 0.9422 36384/60000 [=================>............] - eta: 1s - loss: 0.2027 - accuracy: 0.9421 37120/60000 [=================>............] - eta: 1s - loss: 0.2024 - accuracy: 0.9421 37760/60000 [=================>............] - eta: 1s - loss: 0.2013 - accuracy: 0.9424 38464/60000 [==================>...........] - eta: 1s - loss: 0.2011 - accuracy: 0.9424 39200/60000 [==================>...........] - eta: 1s - loss: 0.2000 - accuracy: 0.9426 40000/60000 [===================>..........] - eta: 1s - loss: 0.1990 - accuracy: 0.9428 40672/60000 [===================>..........] - eta: 1s - loss: 0.1986 - accuracy: 0.9430 41344/60000 [===================>..........] - eta: 1s - loss: 0.1982 - accuracy: 0.9432 42112/60000 [====================>.........] - eta: 1s - loss: 0.1981 - accuracy: 0.9432 42848/60000 [====================>.........] - eta: 1s - loss: 0.1977 - accuracy: 0.9433 43552/60000 [====================>.........] - eta: 1s - loss: 0.1970 - accuracy: 0.9435 44256/60000 [=====================>........] - eta: 1s - loss: 0.1972 - accuracy: 0.9436 44992/60000 [=====================>........] - eta: 1s - loss: 0.1972 - accuracy: 0.9437 45664/60000 [=====================>........] - eta: 1s - loss: 0.1966 - accuracy: 0.9438 46176/60000 [======================>.......] - eta: 1s - loss: 0.1968 - accuracy: 0.9437 46752/60000 [======================>.......] - eta: 1s - loss: 0.1969 - accuracy: 0.9438 47488/60000 [======================>.......] - eta: 0s - loss: 0.1965 - accuracy: 0.9439 48256/60000 [=======================>......] - eta: 0s - loss: 0.1965 - accuracy: 0.9438 48896/60000 [=======================>......] - eta: 0s - loss: 0.1963 - accuracy: 0.9436 49568/60000 [=======================>......] - eta: 0s - loss: 0.1962 - accuracy: 0.9438 50304/60000 [========================>.....] - eta: 0s - loss: 0.1965 - accuracy: 0.9437 51072/60000 [========================>.....] - eta: 0s - loss: 0.1967 - accuracy: 0.9437 51744/60000 [========================>.....] - eta: 0s - loss: 0.1961 - accuracy: 0.9439 52480/60000 [=========================>....] - eta: 0s - loss: 0.1957 - accuracy: 0.9439 53248/60000 [=========================>....] - eta: 0s - loss: 0.1959 - accuracy: 0.9438 54016/60000 [==========================>...] - eta: 0s - loss: 0.1963 - accuracy: 0.9437 54592/60000 [==========================>...] - eta: 0s - loss: 0.1965 - accuracy: 0.9436 55168/60000 [==========================>...] - eta: 0s - loss: 0.1962 - accuracy: 0.9436 55776/60000 [==========================>...] - eta: 0s - loss: 0.1959 - accuracy: 0.9437 56448/60000 [===========================>..] - eta: 0s - loss: 0.1965 - accuracy: 0.9437 57152/60000 [===========================>..] - eta: 0s - loss: 0.1958 - accuracy: 0.9439 57824/60000 [===========================>..] - eta: 0s - loss: 0.1956 - accuracy: 0.9438 58560/60000 [============================>.] - eta: 0s - loss: 0.1951 - accuracy: 0.9440 59360/60000 [============================>.] - eta: 0s - loss: 0.1947 - accuracy: 0.9440 60000/60000 [==============================] - 5s 76us/step - loss: 0.1946 - accuracy: 0.9440 testing------------ 32/10000 [..............................] - eta: 15s 1248/10000 [==>...........................] - eta: 0s 2656/10000 [======>.......................] - eta: 0s 4064/10000 [===========>..................] - eta: 0s 5216/10000 [==============>...............] - eta: 0s 6464/10000 [==================>...........] - eta: 0s 7744/10000 [======================>.......] - eta: 0s 9056/10000 [==========================>...] - eta: 0s 9984/10000 [============================>.] - eta: 0s 10000/10000 [==============================] - 0s 47us/step test loss: 0.17407772153392434 test accuracy: 0.9513000249862671
补充知识:keras 搭建简单神经网络:顺序模型+回归问题
多层全连接神经网络
每层神经元个数、神经网络层数、激活函数等可*修改
使用不同的损失函数可适用于其他任务,比如:分类问题
这是keras搭建神经网络模型最基础的方法之一,keras还有其他进阶的方法,官网给出了一些基本使用方法:keras官网
# 这里搭建了一个4层全连接神经网络(不算输入层),传入函数以及函数内部的参数均可*修改 def ann(x, y): ''' x: 输入的训练集数据 y: 训练集对应的标签 ''' '''初始化模型''' # 首先定义了一个顺序模型作为框架,然后往这个框架里面添加网络层 # 这是最基础搭建神经网络的方法之一 model = sequential() '''开始添加网络层''' # dense表示全连接层,第一层需要我们提供输入的维度 input_shape # activation表示每层的激活函数,可以传入预定义的激活函数,也可以传入符合接口规则的其他高级激活函数 model.add(dense(64, input_shape=(x.shape[1],))) model.add(activation('sigmoid')) model.add(dense(256)) model.add(activation('relu')) model.add(dense(256)) model.add(activation('tanh')) model.add(dense(32)) model.add(activation('tanh')) # 输出层,输出的维度大小由具体任务而定 # 这里是一维输出的回归问题 model.add(dense(1)) model.add(activation('linear')) '''模型编译''' # optimizer表示优化器(可*选择),loss表示使用哪一种 model.compile(optimizer='rmsprop', loss='mean_squared_error') # 自定义学习率,也可以使用原始的基础学习率 reduce_lr = reducelronplateau(monitor='loss', factor=0.1, patience=10, verbose=0, mode='auto', min_delta=0.001, cooldown=0, min_lr=0) '''模型训练''' # 这里的模型也可以先从函数返回后,再进行训练 # epochs表示训练的轮数,batch_size表示每次训练的样本数量(小批量学习),validation_split表示用作验证集的训练数据的比例 # callbacks表示回调函数的集合,用于模型训练时查看模型的内在状态和统计数据,相应的回调函数方法会在各自的阶段被调用 # verbose表示输出的详细程度,值越大输出越详细 model.fit(x, y, epochs=100, batch_size=50, validation_split=0.0, callbacks=[reduce_lr], verbose=0) # 打印模型结构 print(model.summary()) return model
下图是此模型的结构图,其中下划线后面的数字是根据调用次数而定
以上这篇python实现keras搭建神经网络训练分类模型教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。