欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python中创建ndarrary的20中方法讲解

程序员文章站 2022-07-02 18:33:53
本文介绍了基础的、常用的创建ndarrary的多种方法,附带示例代码。 一、通过ndarray创建 import numpy as np 1.1 一维数组 a =...
本文介绍了基础的、常用的创建ndarrary的多种方法,附带示例代码。 一、通过ndarray创建
import numpy as np
1.1 一维数组
a = np.array([1, 2, 3])
a
array([1, 2, 3])
1.2 二维数组
np.array([[1, 2, 3, 4],
       [2, 3, 4, 5]])
array([[1, 2, 3, 4],
       [2, 3, 4, 5]])
1.3 三维数组
arr1 = np.array([
    [
        [1, 2, 32, 23],
        [23, 3, 23, 3]
    ],
    [
        [1, 2, 3, 4],
        [23, 3, 4, 32]
    ]
])
print(arr1)
print(type(arr1))
arr1
[[[ 1  2 32 23]
  [23  3 23  3]]

 [[ 1  2  3  4]
  [23  3  4 32]]]






array([[[ 1,  2, 32, 23],
        [23,  3, 23,  3]],

       [[ 1,  2,  3,  4],
        [23,  3,  4, 32]]])
二、创建ndarrary的常见函数 2. zeros()函数,指定一个维度元组(形状参数),返回全0的ndarrary
arr2 = np.zeros((2, 4))
arr2
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
3. ones()函数,指定一个维度元组(形状参数),返回全1的ndarrary
arr3 = np.ones((4, 4))
arr3
array([[ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.]])
4. empty()函数,指定一个维度元组(形状参数),返回一个值(垃圾值)为被初始化的ndarrary
arr4 = np.empty((2, 2))
arr4
array([[  7.89119642e-312,   4.22795269e-307],
       [  9.34608432e-307,   1.11258854e-306]])
三、其他创建ndarrary的方式 5. numpy.arange([start ], stop[, step ], dtype=None)函数,左开右闭
arr5 = np.arange(1, 10, 1)
arr5
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
6. numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)函数, 产生一个等差数列,左闭右闭
arr6 = np.linspace(0, 4, 5)
arr6
array([ 0.,  1.,  2.,  3.,  4.])
7. numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)函数,底数默认为10
arr7 = np.logspace(0, 4, 5, base=2)
arr7
array([  1.,   2.,   4.,   8.,  16.])
8. numpy.eye(N, M=None, k=0, dtype=
arr8 = np.eye(4, 3)
arr8
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])
9. numpy.zeros_like(a, dtype=None, order=’K’, subok=True)函数,返回一个与a的形状参数一样的元素全部为0的数组

Return an array of zeros with the same shape and type as a given array.
参数subok,是否继承a的数据类型;
参数order,指定返回的结果在内存中的存储布局,默认是’K’,表示尽可能与a相同。

# 返回一个与arr8形状应的全0数组
arr9 = np.zeros_like(arr8)
arr9
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])
10. numpy.ones_like(a, dtype=None, order=’K’, subok=True)函数,

返回一个与a的形状参数一样且元素全为0的数组

# 返回一个与ar9形状应的全0数组
arr10 = np.ones_like(arr9)
arr10
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
11. numpy.empty_like(a, dtype=None, order=’K’, subok=True)函数,返回一个与a形状相同且全部值为垃圾值(随机值)的数组

Return a new array with the same shape and type as a given array.

arr11 = np.empty_like(np.ones((5,4)))
arr11
array([[  7.89102294e-312,   6.27463370e-322,   0.00000000e+000,
          0.00000000e+000],
       [  8.45593933e-307,   5.30276956e+180,   7.70748458e-043,
          4.57487963e-071],
       [  3.45618033e-086,   3.35860426e-143,   6.01433264e+175,
          6.93885958e+218],
       [  5.56218858e+180,   3.94356143e+180,   4.75084178e-037,
          1.24689504e-047],
       [  3.85156077e-057,   2.06073242e+184,   4.71530148e-143,
          1.50008929e+248]])
12. numpy.copy(a, order=’K’)函数,返回与a一样的数组

Return an array copy of the given object.

# 属于深拷贝,修改复制数组,对原数组没有影响
arr12 = np.copy(arr11)
arr12[0, 0] = 1
arr12
array([[  1.00000000e+000,   6.27463370e-322,   0.00000000e+000,
          0.00000000e+000],
       [  8.45593933e-307,   5.30276956e+180,   7.70748458e-043,
          4.57487963e-071],
       [  3.45618033e-086,   3.35860426e-143,   6.01433264e+175,
          6.93885958e+218],
       [  5.56218858e+180,   3.94356143e+180,   4.75084178e-037,
          1.24689504e-047],
       [  3.85156077e-057,   2.06073242e+184,   4.71530148e-143,
          1.50008929e+248]])
13. numpy.identity(n, dtype=None)函数,返回一个n阶单位方阵

Return the identity array.

arr13 = np.identity(4)
arr13
array([[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]])
14. numpy.fromfunction(function, shape, **kwargs)返回一个数组,元素的值由函数计算,形状由shape元组限制

注意:参数shape是一个元组,shape元组中的元素个数需要与函数中的参数个数一致,分别表示不同纬度。

arr20 = np.fromfunction(lambda x, y: x+y, shape=(3, 3))
print(arr20)
arr21 = np.fromfunction(lambda x, y, z: x+y+z, shape=(3, 3, 3))
arr21
[[ 0.  1.  2.]
 [ 1.  2.  3.]
 [ 2.  3.  4.]]





array([[[ 0.,  1.,  2.],
        [ 1.,  2.,  3.],
        [ 2.,  3.,  4.]],

       [[ 1.,  2.,  3.],
        [ 2.,  3.,  4.],
        [ 3.,  4.,  5.]],

       [[ 2.,  3.,  4.],
        [ 3.,  4.,  5.],
        [ 4.,  5.,  6.]]])
15. numpy.mgrid函数
arr14 = np.mgrid[-1:3:2]    # 表示从-1开始,步长为1,取2个数字
print(arr14)
arr15 = np.mgrid[-1:3:2j]  # 当加'j'时,表示左闭右闭,且取到2个数字
print(arr15)
arr16 = np.mgrid[-1:3]    # 当指定两个参数时,功能与numpy.arange()函数一样
print(arr16)
arr18 = np.mgrid[0:5, 0:5] # 分别在两个维度上做填充
print(arr18)
[-1  1]
[-1.  3.]
[-1  0  1  2]
[[[0 0 0 0 0]
  [1 1 1 1 1]
  [2 2 2 2 2]
  [3 3 3 3 3]
  [4 4 4 4 4]]

 [[0 1 2 3 4]
  [0 1 2 3 4]
  [0 1 2 3 4]
  [0 1 2 3 4]
  [0 1 2 3 4]]]
16. numpy.ogrid函数
arr19 = np.ogrid[1:2]
print(arr19)
arr20 = np.ogrid[0:5, 0:5]
print(arr20)
[1]
[array([[0],
       [1],
       [2],
       [3],
       [4]]), array([[0, 1, 2, 3, 4]])]
17. numpy.fromstring(string, dtype=float, count=-1, sep=’‘)函数,从字符串创建一个一维ndarrary
arr21 = np.fromstring('1 2 3 4', sep=' ')
arr21
array([ 1.,  2.,  3.,  4.])
18. numpy.fromiter(iterable, dtype, count=-1)函数,返回一个一维数组
# 需要指定数据类型dtype
iterable = (i*i for i in range(4))
arr22 = np.fromiter(iterable,dtype=float)
arr22
array([ 0.,  1.,  4.,  9.])
四、其他方法

19. numpy.fromfile(file, dtype=float, count=-1, sep=’‘)函数,从文本文件或二进制文件中创建ndarrary

20. numpy.loadtxt(fname, dtype=, comments=’#’, delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, ndmin=0)从文件中创建。