Python:What the f*ck Python(下)
github 上有一个名为《what the f*ck python!》的项目,这个有趣的项目意在收集 python 中那些难以理解和反人类直觉的例子以及鲜为人知的功能特性,并尝试讨论这些现象背后真正的原理!
原版地址:
最近,一位名为“暮晨”的贡献者将其翻译成了中文。
中文版地址:
上一篇 python:what the f*ck python(上)
原本每个的标题都是原版中的英文,有些取名比较奇怪,不直观,我换成了可以描述主题的中文形式,有些是自己想的,不足之处请指正。另外一些 python 中的彩蛋被我去掉了。
26. 非英文字符
>>> value = 11 >>> valuе = 32 >>> value 11
什么鬼?
将代码复制到 pycharm 里看一下就明白了。
有些一些非西方字符虽然看起来和英语字母相同,但会被解释器识别为不同的字母。我们基本不会用到。
27. 空间移动
import numpy as np def energy_send(x): # 初始化一个 numpy 数组 np.array([float(x)]) def energy_receive(): # 返回一个空的 numpy 数组 return np.empty((), dtype=np.float).tolist()
output:
>>> energy_send(123.456) >>> energy_receive() 123.456
说明:
energy_send 函数中创建的 numpy 数组并没有返回,因此内存空间被释放并可以被重新分配。
numpy.empty() 直接返回下一段空闲内存,而不重新初始化。而这个内存点恰好就是刚刚释放的那个(通常情况下,并不绝对)。
28. 不要混用制表符(tab)和空格(space)
tab 是8个空格,而用空格表示则一个缩进是4个空格,混用就会出错。python3 里直接不允许这种行为了,会报错:
taberror: inconsistent use of tabs and spaces in indentation
很多编辑器,例如 pycharm,可以直接设置 tab 表示 4 个空格。
29. 迭代字典时的修改
x = {0: none} for i in x: del x[i] x[i+1] = none print(i)
output(python 2.7- python 3.5):
0 1 2 3 4 5 6 7
说明:
python 不支持 对字典进行迭代的同时修改它,它之所以运行 8 次,是因为字典会自动扩容以容纳更多键值(译: 应该是因为字典的初始最小值是8, 扩容会导致散列表地址发生变化而中断循环)。
在不同的python实现中删除键的处理方式以及调整大小的时间可能会有所不同,python3.6开始,到5就会扩容。
而在 list 中,这种情况是允许的,list 和 dict 的实现方式是不一样的,list 虽然也有扩容,但 list 的扩容是整体搬迁,并且顺序不变。
list = [1] j = 0 for i in list: print(i) list.append(i + 1)
这个代码可以一直运行下去直到 int 越界。但一般不建议在迭代的同时修改 list。
30. __del__
class someclass: def __del__(self): print("deleted!")
output:
>>> x = someclass() >>> y = x >>> del x # 这里应该会输出 "deleted!" >>> del y deleted!
说明:
del x 并不会立刻调用x.__del__()
,每当遇到del x
,python 会将 x 的引用数减 1,当 x 的引用数减到 0 时就会调用x.__del__()
。
我们再加一点变化:
>>> x = someclass() >>> y = x >>> del x >>> y # 检查一下y是否存在 <__main__.someclass instance at 0x7f98a1a67fc8> >>> del y # 像之前一样,这里应该会输出 "deleted!" >>> globals() # 好吧, 并没有。让我们看一下所有的全局变量 deleted! {'__builtins__': <module '__builtin__' (built-in)>, 'someclass': <class __main__.someclass at 0x7f98a1a5f668>, '__package__': none, '__name__': '__main__', '__doc__': none}
y.__del__()
之所以未被调用,是因为前一条语句(>>> y)对同一对象创建了另一个引用,从而防止在执行del y
后对象的引用数变为 0。(这其实是 python 交互解释器的特性,它会自动让_
保存上一个表达式输出的值。)
调用globals()
导致引用被销毁,因此我们可以看到 "deleted!" 终于被输出了。
31. 迭代列表时删除元素
在 29 中,我附加了一个迭代列表时添加元素的例子,现在来看看迭代列表时删除元素。
list_1 = [1, 2, 3, 4] list_2 = [1, 2, 3, 4] list_3 = [1, 2, 3, 4] list_4 = [1, 2, 3, 4] for idx, item in enumerate(list_1): del item for idx, item in enumerate(list_2): list_2.remove(item) for idx, item in enumerate(list_3[:]): list_3.remove(item) for idx, item in enumerate(list_4): list_4.pop(idx)
output:
>>> list_1 [1, 2, 3, 4] >>> list_2 [2, 4] >>> list_3 [] >>> list_4 [2, 4]
说明:
在迭代时修改对象是一个很愚蠢的主意,正确的做法是迭代对象的副本,list_3[:]
就是这么做的。
del、remove、pop 的不同:
- del var_name 只是从本地或全局命名空间中删除了 var_name(这就是为什么 list_1 没有受到影响)。
- remove 会删除第一个匹配到的指定值,而不是特定的索引,如果找不到值则抛出 valueerror 异常。
- pop 则会删除指定索引处的元素并返回它,如果指定了无效的索引则抛出 indexerror 异常。
为什么输出是 [2, 4]?
列表迭代是按索引进行的,所以当我们从list_2
或list_4
中删除 1 时,列表的内容就变成了[2, 3, 4]
。剩余元素会依次位移,也就是说,2
的索引会变为 0,3
会变为 1。由于下一次迭代将获取索引为 1 的元素(即3
), 因此2
将被彻底的跳过。类似的情况会交替发生在列表中的每个元素上。
32. 循环变量泄漏!
①
for x in range(7): if x == 6: print(x, ': for x inside loop') print(x, ': x in global')
output:
6 : for x inside loop 6 : x in global
②
# 这次我们先初始化x x = -1 for x in range(7): if x == 6: print(x, ': for x inside loop') print(x, ': x in global')
output:
6 : for x inside loop 6 : x in global
③
x = 1 print([x for x in range(5)]) print(x, ': x in global')
output:
[0, 1, 2, 3, 4] (4, ': x in global')
output:
[0, 1, 2, 3, 4] 1 : x in global
说明:
在 python 中,for 循环使用所在作用域并在结束后保留定义的循环变量。如果我们曾在全局命名空间中定义过循环变量,它会重新绑定现有变量。
python 2.x 和 python 3.x 解释器在列表推导式示例中的输出差异,在文档 what’s new in python 3.0 中可以找到相关的解释:
"列表推导不再支持句法形式
[... for var in item1, item2, ...]
。使用[... for var in (item1, item2, ...)]
代替。另外注意,列表推导具有不同的语义:它们更接近于list()
构造函数中生成器表达式的语法糖,特别是循环控制变量不再泄漏到周围的作用域中。"
简单来说,就是 python2 中,列表推导式依然存在循环控制变量泄露,而 python3 中不存在。
33. 当心默认的可变参数!
def some_func(default_arg=[]): default_arg.append("some_string") return default_arg
output:
>>> some_func() ['some_string'] >>> some_func() ['some_string', 'some_string'] >>> some_func([]) ['some_string'] >>> some_func() ['some_string', 'some_string', 'some_string']
说明:
python 中函数的默认可变参数并不是每次调用该函数时都会被初始化。相反,它们会使用最近分配的值作为默认值。当我们明确的将[]
作为参数传递给some_func
的时候,就不会使用default_arg
的默认值, 所以函数会返回我们所期望的结果。
>>> some_func.__defaults__ # 这里会显示函数的默认参数的值 ([],) >>> some_func() >>> some_func.__defaults__ (['some_string'],) >>> some_func() >>> some_func.__defaults__ (['some_string', 'some_string'],) >>> some_func([]) >>> some_func.__defaults__ (['some_string', 'some_string'],)
避免可变参数导致的错误的常见做法是将none
指定为参数的默认值,然后检查是否有值传给对应的参数。例:
def some_func(default_arg=none): if not default_arg: default_arg = [] default_arg.append("some_string") return default_arg
34. 捕获异常
这里将的是 python2
some_list = [1, 2, 3] try: # 这里会抛出异常 ``indexerror`` print(some_list[4]) except indexerror, valueerror: print("caught!") try: # 这里会抛出异常 ``valueerror`` some_list.remove(4) except indexerror, valueerror: print("caught again!")
output:
caught! valueerror: list.remove(x): x not in list
说明:
如果你想要同时捕获多个不同类型的异常时,你需要将它们用括号包成一个元组作为第一个参数传递。第二个参数是可选名称,如果你提供,它将与被捕获的异常实例绑定。
也就是说,代码原意是捕获indexerror, valueerror
两种异常,但在 python2 中,必须写成(indexerror, valueerror)
,示例中的写法解析器会将valueerror
理解成绑定的异常实例名。
在 python3 中,不会有这种误解,因为必须使用as
关键字。
35. +=就地修改
①
a = [1, 2, 3, 4] b = a a = a + [5, 6, 7, 8]
output:
>>> a [1, 2, 3, 4, 5, 6, 7, 8] >>> b [1, 2, 3, 4]
②
a = [1, 2, 3, 4] b = a a += [5, 6, 7, 8]
output:
>>> a [1, 2, 3, 4, 5, 6, 7, 8] >>> b [1, 2, 3, 4, 5, 6, 7, 8]
说明:a += b
并不总是与 a = a + b
表现相同。
表达式 a = a + [5,6,7,8]
会生成一个新列表,并让 a
引用这个新列表,同时保持 b
不变。
表达式 a += [5, 6, 7, 8]
实际上是使用的是 "extend"
函数,就地修改列表,所以 a
和 b
仍然指向已被修改的同一列表。
36. 外部作用域变量
a = 1 def some_func(): return a def another_func(): a += 1 return a
output:
>>> some_func() 1 >>> another_func() unboundlocalerror: local variable 'a' referenced before assignment
说明:
当在函数中引用外部作用域的变量时,如果不对这个变量进行修改,则可以直接引用,如果要对其进行修改,则必须使用 global
关键字,否则解析器将认为这个变量是局部变量,而做修改之前并没有定义它,所以会报错。
def another_func() global a a += 1 return a
output:
>>> another_func() 2
37. 小心链式操作
>>> (false == false) in [false] # 可以理解 false >>> false == (false in [false]) # 可以理解 false >>> false == false in [false] # 为毛? true >>> true is false == false false >>> false is false is false true >>> 1 > 0 < 1 true >>> (1 > 0) < 1 false >>> 1 > (0 < 1) false
根据
形式上,如果 a, b, c, ..., y, z 是表达式,而 op1, op2, ..., opn 是比较运算符,那么 a op1 b op2 c ... y opn z 就等于 a op1 b and b op2 c and ... y opn z,除了每个表达式最多被评估一次。
-
false == false in [false]
就相当于false == false and false in [false]
-
1 > 0 < 1
就相当于1 > 0 and 0 < 1
虽然上面的例子似乎很愚蠢, 但是像 a == b == c
或 0 <= x <= 100
就很棒了。
38. 忽略类作用域的名称解析
① 生成器表达式
x = 5 class someclass: x = 17 y = (x for i in range(10))
output:
>>> list(someclass.y) [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
② 列表推导式
x = 5 class someclass: x = 17 y = [x for i in range(10)]
output(python 2.x):
>>> someclass.y [17, 17, 17, 17, 17, 17, 17, 17, 17, 17]
output(python 3.x):
>>> someclass.y [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
说明:
- 类定义中嵌套的作用域会忽略类内的名称绑定。
- 生成器表达式有它自己的作用域。
- 从 python 3 开始,列表推导式也有自己的作用域。
39. 元组
①
x, y = (0, 1) if true else none, none
output:
>>> x, y # 期望的结果是 (0, 1) ((0, 1), none)
②
t = ('one', 'two') for i in t: print(i) t = ('one') for i in t: print(i) t = () print(t)
output:
one two o n e tuple()
说明:
对于 1,正确的语句是 x, y = (0, 1) if true else (none, none)
。
对于 2,正确的语句是 t = ('one',)
或者 t = 'one'
, (缺少逗号) 否则解释器会认为 t 是一个字符串,并逐个字符对其进行迭代。()
是一个特殊的标记,表示空元组。
40. else
① 循环末尾的 else
def does_exists_num(l, to_find): for num in l: if num == to_find: print("exists!") break else: print("does not exist")
output:
>>> some_list = [1, 2, 3, 4, 5] >>> does_exists_num(some_list, 4) exists! >>> does_exists_num(some_list, -1) does not exist
② try 末尾的 else
try: pass except: print("exception occurred!!!") else: print("try block executed successfully...")
output:
try block executed successfully...
说明:
循环后的 else
子句只会在循环执行完成(没有触发 break、return 语句)的情况下才会执行。try
之后的 else
子句也被称为 "完成子句",因为在 try
语句中到达 else
子句意味着 try
块实际上已成功完成。
41. 名称改写
class yo(object): def __init__(self): self.__honey = true self.bitch = true
output:
>>> yo().bitch true >>> yo().__honey attributeerror: 'yo' object has no attribute '__honey' >>> yo()._yo__honey true
说明:
python 中不能像 java 那样使用 private 修饰符创建私有属性。但是,解释器会通过给类中以 _(双下划线)开头且结尾最多只有一个下划线的类成员名称加上 类名 来修饰。这能避免子类意外覆盖父类的“私有”属性。
举个例子:有人编写了一个名为 dog
的类,这个类的内部用到了 mood
实例属性,但是没有将其开放。现在,你创建了 dog
类的子类 beagle
,如果你在毫不知情的情况下又创建了一个 mood
实例属性,那么在继承的方法中就会把 dog
类的 mood
属性覆盖掉。
为了避免这种情况,python 会将 __mood
变成 _dog__mood
,而对于 beagle 类来说,会变成 _beagle__mood
。这个语言特性就叫名称改写(name mangling)。
42. +=更快
>>> timeit.timeit("s1 = s1 + s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100) 0.25748300552368164 # 用 "+=" 连接三个字符串: >>> timeit.timeit("s1 += s2 + s3", setup="s1 = ' ' * 100000; s2 = ' ' * 100000; s3 = ' ' * 100000", number=100) 0.012188911437988281
说明:
连接两个以上的字符串时 += 比 + 更快,因为在计算过程中第一个字符串(例如, s1 += s2 + s3 中的 s1)不会被销毁。(就是 += 执行的是追加操作,少了一个销毁新建的动作。)
上一篇: Django报错解决方法