欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P2045 方格取数加强版(费用流)

程序员文章站 2022-03-12 16:50:46
题意 "题目链接" Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次,需要拆点。 对于拆出来的每个点,在其中连两条边,一条为费用为点权,流量为1,另一条费用为0,流量 ......

题意

题目链接

sol

这题能想到费用流就不难做了

从s向(1, 1)连费用为0,流量为k的边

从(n, n)向t连费用为0,流量为k的边

对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次,需要拆点。

对于拆出来的每个点,在其中连两条边,一条为费用为点权,流量为1,另一条费用为0,流量为inf

相邻两个点之间连费用为0,流量为inf的边。

跑最大费用最大流即可

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long 
#define ll long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? eof : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int maxn = 51, max = 1e5 + 10, mod = 1e9 + 7, inf = 1e9 + 10;
const double eps = 1e-9, pi = acos(-1);
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
    return x * f;
}
int n, k, s = 0, t = 1e5 - 1, a[maxn][maxn], dis[max], vis[max], pre[max], id[maxn][maxn][2], cnt, maxcost;
struct edge {
    int u, v, w, f, nxt;
}e[max];
int head[max], num;
inline void add_edge(int x, int y, int w, int f) {
    e[num] = (edge) {x, y, w, f, head[x]};
    head[x] = num++;
}
inline void ae(int x, int y, int w, int f) {
    add_edge(x, y, w, f);
    add_edge(y, x, -w, 0);
}
bool spfa() {
    queue<int> q; q.push(s);
    memset(dis, -0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    dis[s] = 0;
    while(!q.empty()) {
        int p = q.front(); q.pop(); vis[p] = 0;
        for(int i = head[p]; ~i; i = e[i].nxt) {
            int to = e[i].v;
            if(e[i].f && dis[to] < dis[p] + e[i].w) {
                dis[to] = dis[p] + e[i].w; pre[to] = i;
                if(!vis[to]) vis[to] = 1, q.push(to);
            }
        }
    }
    return dis[t] > -inf;
}
void f() {
    int canflow = inf;
    for(int i = t; i != s; i = e[pre[i]].u) chmin(canflow, e[pre[i]].f);
    for(int i = t; i != s; i = e[pre[i]].u) e[pre[i]].f -= canflow, e[pre[i] ^ 1].f += canflow;
    maxcost += canflow * dis[t];
}
void mcmf() {
    while(spfa()) f();
}
signed main() {
//  freopen("a.in", "r", stdin);
    memset(head, -1, sizeof(head));
    n = read(); k = read();
    for(int i = 1; i <= n; i++) 
        for(int j = 1; j <= n; j++) 
            a[i][j] = read(), id[i][j][0] = ++cnt, id[i][j][1] = ++cnt;
    ae(s, id[1][1][0], 0, k);
    ae(id[n][n][1], t, 0, k);
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
            ae(id[i][j][0], id[i][j][1], a[i][j], 1);
            ae(id[i][j][0], id[i][j][1], 0, inf);
            if(i + 1 <= n) ae(id[i][j][1], id[i + 1][j][0], 0, inf);
            if(j + 1 <= n) ae(id[i][j][1], id[i][j + 1][0], 0, inf);
        }
    }
    mcmf();
    printf("%d", maxcost);
    return 0;
}
/*
3 2
1 2 3
0 2 1
1 4 2
*/