欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python机器学习之神经网络(二)

程序员文章站 2022-07-02 14:48:54
由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想。为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下:...

由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想。为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下:

python机器学习之神经网络(二)

该网络由输入层,隐藏层,和输出层构成,能表示种类繁多的非线性曲面,每一个隐藏层都有一个激活函数,将该单元的输入数据与权值相乘后得到的值(即诱导局部域)经过激活函数,激活函数的输出值作为该单元的输出,激活函数类似与硬限幅函数,但硬限幅函数在阈值处是不可导的,而激活函数处处可导。本次程序中使用的激活函数是tanh函数,公式如下:

python机器学习之神经网络(二)

tanh函数的图像如下:

python机器学习之神经网络(二)

程序中具体的tanh函数形式如下:

python机器学习之神经网络(二)

python机器学习之神经网络(二)就是神经元j的诱导局部域

它的局部梯度分两种情况:

(1)神经元j没有位于隐藏层:

python机器学习之神经网络(二)

(2)神经元j位于隐藏层:

python机器学习之神经网络(二)

其中k是单元j后面相连的所有的单元。

局部梯度得到之后,根据增量梯度下降法的权值更新法则

python机器学习之神经网络(二)

即可得到下一次的权值w,经过若干次迭代,设定误差条件,即可找到权值空间的最小值。

python程序如下,为了能够可视化,训练数据采用二维数据,每一个隐藏层有8个节点,设置了7个隐藏层,一个输出层,输出层有2个单元:

import numpy as np 
import random 
import copy 
import matplotlib.pyplot as plt 
 
 
#x和d样本初始化 
train_x = [[1,6],[3,12],[3,9],[3,21],[2,16],[3,15]] 
d =[[1,0],[1,0],[0,1],[0,1],[1,0],[0,1]] 
warray_txn=len(train_x[0]) 
warray_n=warray_txn*4 
 
#基本参数初始化 
oldmse=10**100 
fh=1 
maxtrycount=500 
mycount=0.0 
if maxtrycount>=20: 
    r=maxtrycount/5 
else: 
    r=maxtrycount/2 
#sigmoid函数 
ann_sigfun=None 
ann_delta_sigfun=None 
#总层数初始化,比非线性导数多一层线性层 
alllevel_count=warray_txn*4 
# 非线性层数初始化 
hidelevel_count=alllevel_count-1 
 
#学习率参数  
learn_r0=0.002  
learn_r=learn_r0    
#动量参数 
train_a0=learn_r0*1.2 
train_a=train_a0 
expect_e=0.05 
#对输入数据进行预处理 
ann_max=[] 
for m_ani in xrange(0,warray_txn):       #找出训练数据中每一项的最大值 
  temp_x=np.array(train_x) 
  ann_max.append(np.max(temp_x[:,m_ani])) 
ann_max=np.array(ann_max) 
 
def getnowsx(mysx,in_w): 
    '''''生成本次的扩维输入数据 ''' 
    '''''mysx==>输入数据,in_w==>权值矩阵,每一列为一个神经元的权值向量''' 
    global warray_n 
    mysx=np.array(mysx) 
    x_end=[]   
    for i in xrange(0,warray_n): 
        x_end.append(np.dot(mysx,in_w[:,i])) 
    return x_end 
 
def get_inlw(my_train_max,w_count,myin_x): 
    '''''找出权值矩阵均值接近0,输出结果方差接近1的权值矩阵''' 
    #对随机生成的多个权值进行优化选择,选择最优的权值 
    global warray_txn 
    global warray_n 
    mylw=[] 
    y_in=[] 
    #生成测试权值 
    mylw=np.random.rand(w_count,warray_txn,warray_n) 
    for ii in xrange (0,warray_txn): 
      mylw[:,ii,:]=mylw[:,ii,:]*1/float(my_train_max[ii])-1/float(my_train_max[ii])*0.5 
 
    #计算输出 
    for i in xrange(0,w_count): 
        y_in.append([]) 
        for xj in xrange(0,len(myin_x)): 
            y_in[i].append(getnowsx(myin_x[xj],mylw[i])) 
    #计算均方差 
    mymin=10**5 
    mychoice=0 
    for i in xrange(0,w_count): 
        myvar=np.var(y_in[i]) 
        if abs(myvar-1)<mymin: 
            mymin=abs(myvar-1) 
            mychoice=i 
    #返回数据整理的权值矩阵 
    return mylw[mychoice] 
mylnww=get_inlw(ann_max,300,train_x) 
 
def get_inputx(mytrain_x,myin_w): 
    '''''将训练数据经过权值矩阵,形成扩维数据''' 
    end_trainx=[] 
    for i in xrange(0,len(mytrain_x)): 
        end_trainx.append(getnowsx(mytrain_x[i],myin_w))     
    return end_trainx 
     
x=get_inputx(train_x,mylnww)#用于输入的扩维数据 
#对测试数据进行扩维 
def get_siminx(sim_x): 
    global mylnww 
    myxx=np.array(sim_x) 
    return get_inputx(myxx,mylnww) 
#计算一层的初始化权值矩阵 
def getlevelw(myin_x,wo_n,wi_n,w_count): 
    mylw=[] 
    y_in=[] 
    #生成测试权值 
    mylw=np.random.rand(w_count,wi_n,wo_n) 
    mylw=mylw*2.-1 
 
    #计算输出 
    for i in xrange(0,w_count): 
        y_in.append([]) 
        for xj in xrange(0,len(myin_x)): 
          x_end=[]   
          for myii in xrange(0,wo_n): 
            x_end.append(np.dot(myin_x[xj],mylw[i,:,myii])) 
          y_in[i].append(x_end) 
    #计算均方差 
    mymin=10**3 
    mychoice=0 
    for i in xrange(0,w_count): 
        myvar=np.var(y_in[i]) 
        if abs(myvar-1)<mymin: 
            mymin=abs(myvar-1) 
            mychoice=i 
    #返回数据整理的权值矩阵 
    csmylw=mylw[mychoice] 
    return csmylw,y_in[mychoice]     
ann_w=[] 
def init_annw(): 
  global x 
  global hidelevel_count 
  global warray_n 
  global d 
  global ann_w 
  ann_w=[] 
  
  lwyii=np.array(x) 
  #初始化每层的w矩阵 
  for myn in xrange(0,hidelevel_count):         
    #层数 
    ann_w.append([])  
    if myn==hidelevel_count-1: 
      for iii in xrange(0,warray_n): 
        ann_w[myn].append([]) 
        for jjj in xrange(0,warray_n): 
                ann_w[myn][iii].append(0.0) 
    elif myn==hidelevel_count-2:       
      templw,lwyii=getlevelw(lwyii,len(d[0]),warray_n,200) 
      for xii in xrange(0,warray_n): 
        ann_w[myn].append([]) 
        for xjj in xrange(0,len(d[0])):  
          ann_w[myn][xii].append(templw[xii,xjj])  
        for xjj in xrange(len(d[0]),warray_n): 
          ann_w[myn][xii].append(0.0) 
    else:  
      templw,lwyii=getlevelw(lwyii,warray_n,warray_n,200) 
      for xii in xrange(0,warray_n): 
        ann_w[myn].append([]) 
        for xjj in xrange(0,warray_n):  
          ann_w[myn][xii].append(templw[xii,xjj])         
  ann_w=np.array(ann_w) 
 
def generate_lw(trycount): 
  global ann_w 
  print u"产生权值初始矩阵",        
  meanmin=1  
  myann_w=ann_w     
  alltry=30 
  tryc=0 
  while tryc<alltry: 
    for i_i in range(trycount): 
      print ".", 
      init_annw() 
      if abs(np.mean(np.array(ann_w)))<meanmin: 
        meanmin=abs(np.mean(np.array(ann_w))) 
        myann_w=ann_w 
    tryc+=1 
    if abs(np.mean(np.array(myann_w)))<0.008:break 
     
  ann_w=myann_w 
  print 
  print u"权值矩阵平均:%f"%(np.mean(np.array(ann_w))) 
  print u"权值矩阵方差:%f"%(np.var(np.array(ann_w)))    
generate_lw(15) 
 
#前次训练的权值矩阵 
ann_oldw=copy.deepcopy(ann_w) 
#梯度初始化 
#输入层即第一层隐藏层不需要,所以第一层的空间无用 
ann_delta=[] 
for i in xrange(0,hidelevel_count): 
    ann_delta.append([])    
    for j in xrange(0,warray_n): 
        ann_delta[i].append(0.0) 
ann_delta=np.array(ann_delta) 
 
#输出矩阵yi初始化 
ann_yi=[] 
for i in xrange(0,alllevel_count): 
    #第一维是层数,从0开始 
    ann_yi.append([]) 
    for j in xrange(0,warray_n): 
        #第二维是神经元 
        ann_yi[i].append(0.0) 
ann_yi=np.array(ann_yi)    
 
 
    
#输出层函数     
def o_func(myy): 
    myresult=[] 
    mymean=np.mean(myy) 
    for i in xrange(0,len(myy)): 
        if myy[i]>=mymean: 
            myresult.append(1.0) 
        else: 
            myresult.append(0.0) 
    return np.array(myresult) 
     
def get_e(myd,myo): 
    return np.array(myd-myo) 
def ann_atanh(myv): 
    atanh_a=1.7159#>0 
    atanh_b=2/float(3)#>0 
    temp_rs=atanh_a*np.tanh(atanh_b*myv) 
    return temp_rs 
def ann_delta_atanh(myy,myd,nowlevel,level,n,mydelta,myw): 
  anndelta=[] 
  atanh_a=1.7159#>0 
  atanh_b=2/float(3)#>0  
  if nowlevel==level: 
    #输出层 
    anndelta=(float(atanh_b)/atanh_a)*(myd-myy)*(atanh_a-myy)*(atanh_a+myy) 
  else: 
    #隐藏层 
    anndelta=(float(atanh_b)/atanh_a)*(atanh_a-myy)*(atanh_a+myy)       
    temp_rs=[] 
    for j in xrange(0,n): 
        temp_rs.append(sum(myw[j]*mydelta))         
    anndelta=anndelta*temp_rs     
  return anndelta 
 
def sample_train(myx,myd,n,sigmoid_func,delta_sigfun): 
    '''''一个样本的前向和后向计算''' 
    global ann_yi 
    global ann_delta 
    global ann_w 
    global ann_wj0 
    global ann_y0 
    global hidelevel_count 
    global alllevel_count 
    global learn_r 
    global train_a 
    global ann_oldw 
    level=hidelevel_count 
    allevel=alllevel_count 
     
    #清空yi输出信号数组     
    hidelevel=hidelevel_count 
    alllevel=alllevel_count 
    for i in xrange(0,alllevel): 
        #第一维是层数,从0开始 
        for j in xrange(0,n): 
            #第二维是神经元 
            ann_yi[i][j]=0.0 
    ann_yi=np.array(ann_yi) 
    yi=ann_yi 
 
    #清空delta矩阵 
    for i in xrange(0,hidelevel-1):   
        for j in xrange(0,n): 
            ann_delta[i][j]=0.0 
    delta=ann_delta    
    #保留W的拷贝,以便下一次迭代 
    ann_oldw=copy.deepcopy(ann_w) 
    oldw=ann_oldw 
    #前向计算 
 
    #对输入变量进行预处理        
    myo=np.array([]) 
    for nowlevel in xrange(0,alllevel): 
        #一层层向前计算 
        #计算诱导局部域 
        my_y=[] 
        myy=yi[nowlevel-1]  
        myw=ann_w[nowlevel-1]         
        if nowlevel==0: 
            #第一层隐藏层 
            my_y=myx 
            yi[nowlevel]=my_y             
        elif nowlevel==(alllevel-1): 
            #输出层 
            my_y=o_func(yi[nowlevel-1,:len(myd)]) 
            yi[nowlevel,:len(myd)]=my_y 
        elif nowlevel==(hidelevel-1): 
            #最后一层输出层 
            for i in xrange(0,len(myd)): 
                temp_y=sigmoid_func(np.dot(myw[:,i],myy)) 
                my_y.append(temp_y)             
            yi[nowlevel,:len(myd)]=my_y  
        else: 
            #中间隐藏层 
            for i in xrange(0,len(myy)): 
                temp_y=sigmoid_func(np.dot(myw[:,i],myy)) 
                my_y.append(temp_y) 
            yi[nowlevel]=my_y 
 
    
    #计算误差与均方误差 
    myo=yi[hidelevel-1][:len(myd)] 
    myo_end=yi[alllevel-1][:len(myd)] 
    mymse=get_e(myd,myo_end) 
  
    #反向计算 
    #输入层不需要计算delta,输出层不需要计算W 
 
 
    #计算delta 
    for nowlevel in xrange(level-1,0,-1): 
        if nowlevel==level-1: 
            mydelta=delta[nowlevel] 
            my_n=len(myd) 
        else: 
            mydelta=delta[nowlevel+1] 
            my_n=n 
        myw=ann_w[nowlevel]         
        if nowlevel==level-1: 
            #输出层 
            mydelta=delta_sigfun(myo,myd,None,None,None,None,None) 
##            mydelta=mymse*myo 
        elif nowlevel==level-2: 
            #输出隐藏层的前一层,因为输出结果和前一层隐藏层的神经元数目可能存在不一致 
            #所以单独处理,传相当于输出隐藏层的神经元数目的数据 
            mydelta=delta_sigfun(yi[nowlevel],myd,nowlevel,level-1,my_n,mydelta[:len(myd)],myw[:,:len(myd)]) 
        else: 
            mydelta=delta_sigfun(yi[nowlevel],myd,nowlevel,level-1,my_n,mydelta,myw) 
             
        delta[nowlevel][:my_n]=mydelta 
    #计算与更新权值W  
    for nowlevel in xrange(level-1,0,-1): 
        #每个层的权值不一样 
        if nowlevel==level-1: 
            #输出层 
            my_n=len(myd) 
            mylearn_r=learn_r*0.8 
            mytrain_a=train_a*1.6 
        elif nowlevel==1: 
            #输入层 
            my_n=len(myd) 
            mylearn_r=learn_r*0.9 
            mytrain_a=train_a*0.8             
        else: 
            #其它层 
            my_n=n 
            mylearn_r=learn_r 
            mytrain_a=train_a 
 
        pre_level_myy=yi[nowlevel-1] 
        pretrain_myww=oldw[nowlevel-1] 
        pretrain_myw=pretrain_myww[:,:my_n] 
 
        #第二个调整参数 
        temp_i=[]         
         
        for i in xrange(0,n): 
            temp_i.append([]) 
            for jj in xrange(0,my_n): 
                temp_i[i].append(mylearn_r*delta[nowlevel,jj]*pre_level_myy[i]) 
        temp_rs2=np.array(temp_i) 
        temp_rs1=mytrain_a*pretrain_myw 
        #总调整参数 
        temp_change=temp_rs1+temp_rs2         
        my_ww=ann_w[nowlevel-1]         
        my_ww[:,:my_n]+=temp_change 
 
    return mymse 
 
def train_update(level,nowtraincount,sigmoid_func,delta_sigfun): 
    '''''一次读取所有样本,然后迭代一次进行训练''' 
    #打乱样本顺序 
    global learn_r 
    global train_a 
    global train_a0 
    global learn_r0 
    global r 
    global x 
    global d 
    global maxtrycount 
    global oldmse 
    x_n=len(x) 
    ids=range(0,x_n) 
    train_ids=[] 
    sample_x=[] 
    sample_d=[] 
 
    while len(ids)>0: 
        myxz=random.randint(0,len(ids)-1) 
        train_ids.append(ids[myxz]) 
        del ids[myxz] 
             
    for i in xrange(0,len(train_ids)): 
        sample_x.append(x[train_ids[i]]) 
        sample_d.append(d[train_ids[i]]) 
    sample_x=np.array(sample_x) 
    sample_d=np.array(sample_d) 
 
         
    #读入x的每个样本,进行训练     
    totalmse=0.0 
    mymse=float(10**-10)    
    for i in xrange(0,x_n): 
         
        mymse=sample_train(sample_x[i],sample_d[i],warray_n,sigmoid_func,delta_sigfun) 
        totalmse+=sum(mymse*mymse) 
    totalmse=np.sqrt(totalmse/float(x_n)) 
    print u"误差为:%f" %(totalmse) 
    nowtraincount[0]+=1 
    learn_r=learn_r0/(1+float(nowtraincount[0])/r) 
    train_a=train_a0/(1+float(nowtraincount[0])/r) 
    if nowtraincount[0]>=maxtrycount: 
        return False,True,totalmse          
    elif totalmse<expect_e: 
    #(totalmse-oldmse)/oldmse>0.1 and (totalmse-oldmse)/oldmse<1: 
        print u"训练成功,正在进行检验" 
        totalmse=0.0 
        for i in xrange(0,x_n): 
            mytemper=(sample_d[i]-simulate(sample_x[i],sigmoid_func,delta_sigfun))             
            totalmse+=sum(mytemper*mytemper) 
        totalmse=np.sqrt(totalmse/float(x_n)) 
        if totalmse<expect_e: 
            return False,False,totalmse 
    oldmse=totalmse 
    return True,False,totalmse 
                 
def train(): 
    '''''训练样本,多次迭代''' 
    global hidelevel_count 
    nowtraincount=[] 
    nowtraincount.append(0) 
    #sigmoid函数指定 
    delta_sigfun=ann_delta_atanh 
    sigmoid_func=ann_atanh 
     
    tryerr=0     
    while True: 
        print u"-------开始第%d次训练---------"%(nowtraincount[0]+1), 
        iscontinue,iscountout,mymse=train_update(hidelevel_count,nowtraincount,sigmoid_func,delta_sigfun) 
        if not iscontinue: 
            if iscountout : 
                print u"训练次数已到,误差为:%f"%mymse  
                tryerr+=1  
                if tryerr>3: 
                  break 
                else: 
                  print u"训练失败,重新尝试第%d次"%tryerr 
                  nowtraincount[0]=0 
                  generate_lw(15+tryerr*2)                                                       
            else: 
                print u"训练成功,误差为:%f"%mymse                
                break 
        
def simulate(myx,sigmoid_func,delta_sigfun): 
    '''''一个样本的仿真计算''' 
    print u"仿真计算中"     
    global ann_yi 
    global ann_w 
    global ann_wj0 
    global ann_y0 
    global hidelevel_count 
    global alllevel_count 
    global d 
    myd=d[0] 
 
    myx=np.array(myx) 
    n=len(myx) 
 
    level=hidelevel_count 
    allevel=alllevel_count 
     
    #清空yi输出信号数组     
    hidelevel=hidelevel_count 
    alllevel=alllevel_count 
    for i in xrange(0,alllevel): 
        #第一维是层数,从0开始 
        for j in xrange(0,n): 
            #第二维是神经元 
            ann_yi[i][j]=0.0 
    ann_yi=np.array(ann_yi) 
    yi=ann_yi 
 
    #前向计算 
    myo=np.array([]) 
    myy=np.array([]) 
    for nowlevel in xrange(0,alllevel): 
        #一层层向前计算 
        #计算诱导局部域 
        my_y=[] 
        myy=yi[nowlevel-1] 
        myw=ann_w[nowlevel-1]         
        if nowlevel==0: 
            #第一层隐藏层 
            my_y=myx 
            yi[nowlevel]=my_y             
        elif nowlevel==(alllevel-1): 
            #线性输出层,使用线性激活 
            my_y=o_func(yi[nowlevel-1,:len(myd)]) 
            yi[nowlevel,:len(myd)]=my_y             
        elif nowlevel==(hidelevel-1): 
            #最后一层隐藏输出层,使用线性激活 
            for i in xrange(0,len(myd)): 
                temp_y=sigmoid_func(np.dot(myw[:,i],myy)) 
                my_y.append(temp_y)               
            yi[nowlevel,:len(myd)]=my_y  
        else: 
            #中间隐藏层 
            #中间隐藏层需要加上偏置 
            for i in xrange(0,len(myy)): 
                temp_y=sigmoid_func(np.dot(myw[:,i],myy)) 
                my_y.append(temp_y) 
            yi[nowlevel]=my_y 
 
    return yi[alllevel-1,:len(myd)]     
train() 
 
delta_sigfun=ann_delta_atanh 
sigmoid_func=ann_atanh 
 
 
for xn in xrange(0,len(x)): 
    if simulate(x[xn],sigmoid_func,delta_sigfun)[0]>0: 
        plt.plot(train_x[xn][0],train_x[xn][1],"bo") 
    else: 
        plt.plot(train_x[xn][0],train_x[xn][1],"b*") 
 
 
              
temp_x=np.random.rand(20)*10 
temp_y=np.random.rand(20)*20+temp_x 
myx=temp_x 
myy=temp_y 
plt.subplot(111) 
x_max=np.max(myx)+5 
x_min=np.min(myx)-5 
y_max=np.max(myy)+5 
y_min=np.min(myy)-5 
plt.xlim(x_min,x_max) 
plt.ylim(y_min,y_max) 
for i in xrange(0,len(myx)): 
    test=get_siminx([[myx[i],myy[i]]]) 
    if simulate(test,sigmoid_func,delta_sigfun)[0]>0:       
        plt.plot(myx[i],myy[i],"ro") 
    else: 
        plt.plot(myx[i],myy[i],"r*")  
 
plt.show() 

python机器学习之神经网络(二)

图中蓝色是训练数据,红色是测试数据,圈圈代表类型[1,0],星星代表类型[0,1]。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。