欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

tensorflow学习之(四)使用placeholder 传入值

程序员文章站 2022-07-02 13:46:42
#placeholder 传入值 import tensorflow as tf """ tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值; 名称的真实含义,在于变量,也即在... ......
#placeholder 传入值
import tensorflow as tf

"""
tf.variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,w)或者偏执值(bias):
    声明时,必须提供初始值;
    名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初始值; 
tf.placeholder:用于得到传递进来的真实的训练样本:
    不必指定初始值,可在运行时,通过 session.run 的函数的 feed_dict 参数指定;
    这也是其命名的原因所在,仅仅作为一种占位符;
"""
input1 = tf.placeholder(tf.float32)#默认是float32的形式
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1,input2)

with tf.session() as sess:
    print(sess.run(output,feed_dict={input1:[7.0],input2:[2.0]}))#以字典的形式传值给output