欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python基础(十一)

程序员文章站 2022-07-02 12:45:29
- 补充:三目运算 - f-strings - 迭代器 - 生成器 ......

今日主要内容

  • 补充:三目运算
  • f-strings
  • 迭代器
  • 生成器

补充:三目运算

  1. 三目运算(三元运算)结构:
  • 表达式1 if 条件表达式 else 表达式2
  • c = a if a > b else b
  1. 执行流程:

    • 判断条件,如果条件正确将a赋值给c
    • 如果条件不正确将b赋值给c
    a = 10
    b = 20
    c = a if a > b else b  # 三目运算
    print(c)
    
    运行结果:
    20

一、f-strings

  • f-strings之前我们已经说过了,python3.6以上的版本可以使用,用来格式化输出,非常的方便,今天来详细说一下
  1. f-strings的格式:

    • f"xxxx{传入的变量}xxxx"(建议使用f
    • f"xxxx{传入的变量}xxxx"(不建议使用f
    name = "zxd"
    age = 23
    print(f"姓名:{name} 年龄:{age}")
    
    运行结果:
    姓名:zxd 年龄:23
  2. 引号中如果需要大括号{}时,用两个{{}}代表

    print(f"{{'a'}}")  # 用两个大括号表示
    
    运行结果:
    {'a'}
  3. 引号中需要使用引号时,一定用两个单引号''表示

    print(f"{{'a'}}")  # 用单引号表示
    
    运行结果:
    {'a'}
  4. 传入的参数可以是三目表达式

    a = 10
    b = 10
    print(f"{a if a > b else b}")
    
    运行结果:
    10

二、迭代器

(一)可迭代对象

  • 说迭代器之前咱们来看一看可迭代对象,什么是可迭代对象?

    • 可以一个一个取值的对象就是可迭代对象
    s = "12345"
    lst = [1, 2, 3, 4, 5]
    dic = {1: 1, 2: 2, 3: 3}
    .......
    
    # 这些都是可迭代对象
    • 他们共有的一个特点就是可以被for循环
    s = "12345"
    lst = [1, 2, 3, 4, 5]
    dic = {1: 1, 2: 2, 3: 3}
    
    for el in s:
      print(el)
    for el in lst:
      print(el)
    for el in dic:
      print(el)   
  1. 查看可迭代对象的官方方法:

    • 查看对象是否有__iter__()方法,只要使用有此方法的对象全部都是可迭代对象
    • dir()函数可以查看对象所有的方法
    lst = [1, 2, 3, 4, 5]
    print("__iter__" in dir(lst))
    
    运行结果:
    true
  2. 可迭代对象的特点:

    • 空间换时间的理念(用大量的空间节省时间)
    • 优点:
      • 使用灵活,每个可迭代对象都有自己的方法
      • 能够直接查看元素个数
      • 可以重复取值
    • 缺点:
      • 占内存
  3. 应用:内存空间大,当数据量比较少,建议使用可迭代对象

(二)迭代器

  • 迭代器可以理解成可迭代对象的实体化,它只继承了迭代性(可以一个一个取值),同时节约了内存(唯一的优点)
  • 文件句柄就是一个迭代器
  1. 迭代器的生成方法:

    • 两种生成方法效果相同
    • iter(可迭代对象)
      • 生成可迭代对象的迭代器
      • 打印的是迭代器的地址
    lst = [1, 2, 3, 4, 5]
    l = iter(lst)
    print(l)
    
    运行结果:
    <list_iterator object at 0x0000020bafcea940>
    
    • 可迭代对象.__iter__()
      • 生成可迭代对象的迭代器
      • 打印的是迭代器的地址
    lst = [1, 2, 3, 4, 5]
    l = lst.__iter__()
    print(l)
    
    运行结果:
    <list_iterator object at 0x000002490efda8d0>
    
  2. 迭代器的取值

    • 迭代器最大的特点就是惰性机制,如果不主动向迭代器取值,迭代器是不会给你值的,同时也正因为惰性机制节约了内存
    • next(迭代器)
    lst = [1, 2, 3, 4, 5]
    l = iter(lst)
    print(next(l))
    print(next(l))
    print(next(l))
    print(next(l))
    print(next(l))
    
    运行结果:
    1 2 3 4 5
    
    • 迭代器.__next__()
    lst = [1, 2, 3, 4, 5]
    l = lst.__iter__()
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    
    运行结果:
    1 2 3 4 5
    
    • 每次执行取值函数只向迭代器取一个值,按顺序向下取值,不能重复取值,迭代器中有多少个元素就只能next多少次,超出最大个数会报错
    lst = [1, 2, 3, 4, 5]
    l = lst.__iter__()
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    print(l.__next__())
    
    运行结果:
    1 2 3 4 5
    stopiteration
    
  3. 迭代器的特点:

    • 时间换空间理念(用大量的时间去节省空间)
    • 节省内存
    • 惰性机制
    • 只能向下取值,不能往复
  4. for循环的本质就是一个迭代器

    • 捕获异常:向迭代器取值超出迭代器元素数量时,会捕获stopiteration异常,从而终止while循环
    lst = [1, 2, 3, 4, 5]
    l = iter(lst)
    while true:
     try:
         print(next(l))
     except stopiteration:  # 捕获异常
         break
    
  5. 向同一个迭代器取值,迭代器内部会记录取值位置,赋值给变量,变量会指向地址和上次取值位置

    lst = [1, 2, 3, 4, 5]
    l_iter = iter(lst)
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))  # l_iter指向取值记录位置
    
    运行结果:
    1 2 3 4 5
    
    • l_iter指向迭代器的地址,每一次取值,l_iter指向上一次取值位置
    • 可以理解成通过熟人买东西,每次买都是上次的优惠价
  6. 向同一个迭代器取值,迭代器内部会记录取值位置,若不赋值,每一次取值都从开头取值,相当于每次寻址后都从头开始

    lst = [1, 2, 3, 4, 5]
    print(next(iter(lst)))
    print(next(iter(lst)))
    print(next(iter(lst)))
    print(next(iter(lst)))
    print(next(iter(lst)))
    print(next(iter(lst)))  # 每次都从头开始取值
    
    运行结果:
    1 1 1 1 1
    
    • 没有赋值每次通过func()直接寻址,都从头部开始取值
    • 可以理解成没有熟人了,每次买东西都是原价
  7. 应用:内存小,数据量巨大时,建议使用迭代器

(三)两者关系

  • 迭代器一定是可迭代对象,可迭代对象不一定是迭代器
  • 迭代器可以通过iter(可迭代对象)可迭代对象.__iter__()得到

三、生成器

(一)什么是生成器

  • 生成器的本质就是迭代器

  • 生成器就是一个自己写的迭代器,而迭代器只能通过iter()函数得到

  • 生成器的目的是不通过数据转换实现,通过代码实现

    • 列表转换成了迭代器,但是列表依旧加载到了内存,没有达到省内存的效果
    lst = [1, 2, 3, 4, 5]
    l_iter = iter(lst)
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))
    print(next(l_iter))
    
    运行结果:
    1 2 3 4 5
    
    • 通过生成器真正达到省内存的效果
    def func():
      yield 1
      yield 2
      yield 3
      yield 4
      yield 5
    
    f_gen = func()
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    
    运行结果:
    1 2 3 4 5
    

(二)生成器

  1. 通过函数实现生成器

    • 先来看一个函数
    def func():
     print(1)
     return 1
    
    print(func())
    
    运行结果:
    1 1
    
    • 将函数中return替换成yield就变成了一个生成器
    def func():
     print(1)
     yield 1
    
    print(func())
    
    运行结果:
    <generator object func at 0x000001b27042c50>
    
    • 如果定义的是函数,函数名加括号是调用函数;而如果定义的是生成器,函数名加括号是得到的是生成器的内存地址
    • yield
      • yield能返回多个值,以元组形式存储
      • yield能返回各种数据类型
      • yield能够写多个并且都能执行
      • yield能够记录执行位置
      • yield后面不写内容,默认返回none
      • yield只能向下进行,不能往复,一次性取值
  2. 生成器的取值

    • next(生成器)
    def func():
    yield 1
     yield 2
    yield 3
     yield 4
    yield 5
    
    f_gen = func()
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    
    运行结果:
    1 2 3 4 5
    
    • 生成器.__next__()
    def func():
     yield 1
    yield 2
     yield 3
     yield 4
     yield 5
    
    print(func().__next__())
    print(func().__next__())
    print(func().__next__())
    print(func().__next__())
    print(func().__next__())
    
    运行结果:
    1 2 3 4 5
    
  3. 生成器的本质就是一个迭代器,所以它拥有迭代器的所有特点

    • 时间换空间理念(用大量的时间去节省空间)
    • 节省内存
    • 惰性机制
    • 只能向下取值,不能往复
  4. 向同一个生成器取值,yield会记录取值位置,赋值给变量,变量会指向地址和上次取值位置

    def func():
     yield 1
     yield 2
     yield 3
     yield 4
     yield 5
    
    f_gen = func()
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))
    print(next(f_gen))  # f_gen指向生成器地址和yiele记录的位置
    
    运行结果:
    1 2 3 4 5
    
  5. 向同一个生成器取值,yield会记录取值位置,若不赋值,每一次取值都从开头取值,相当于每次寻址后都从头开始

    def func():
     yield 1
     yield 2
     yield 3
     yield 4
     yield 5
    
    print(next(func()))
    print(next(func()))
    print(next(func()))
    print(next(func()))
    print(next(func()))  # 每次都从头开始取值
    
    运行结果:
    1 2 3 4 5
    
  6. 若yield的值是个可迭代对象,还可以将其对象逐个返回

    • yield from
    def func():
     yield from [1, 2, 3]
     yield from [4, 5, 6]
    
    print(next(func()))
    print(next(func()))
    print(next(func()))
    print(next(func()))
    print(next(func()))
    print(next(func()))
    
    运行结果:
    1 2 3 4 5 6
    

四、三者区分

(一)可迭代对象

  • 只要是可以使用__iter__()方法的对象都是可迭代对象
  • 迭代器和生成器都是可迭代对象

(二)迭代器

  • 查看对象的内存地址,如果有iterator就是一个迭代器
  • 拥有__iter__()__next__()放法的就是一个迭代器

(三)生成器

  • 查看对象的内存地址,如果有generator就是一个生成器
  • 可以使用send()方法的就是一个生成器