欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

这些好用却鲜为人知的Python库,你知道多少?

程序员文章站 2022-07-02 12:31:36
前言 本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。 作者: 读芯术 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 http://note.youdao.com/noteshare?id=3054cce4 ......

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: 读芯术

ps:如有需要python学习资料的小伙伴可以加点击下方链接自行获取

生活中,常常有一些人,明明很有能力,却不被身边人看好。

是金子总能发光,这句话放在现实生活中,其实并不完全适用,人口众多,不乏有才之人,想要成功就需要一个一鸣惊人的机会。

python也是。

python中有很多现成的性能不错的库。collections就是其中一个。

collections模块提供了“高性能的容器数据类型”,是通用容器字典、列表、集合和元组的完美替代。

但却常常被人忽视或者看轻。

今天,小芯就将努力当一个“好伯乐”,简洁明了地为大家介绍那些不被看好的python库,发掘出它们的无限潜能。

在本文中将会向读者仔细介绍其中的三种数据类型,相信在阅读完本文后,大家一定会疑惑自己之前是如何在没有这些库的情况下完成编程。

counter

counter的名字很贴切——它的主要功能就是计数。这听起来很简单,但事实证明,数据科学家经常不得不进行计数,所以它十分有效。

有几种方法可以实现初始化,但笔者通常会设置一个如下图的值列表

1 from  collections import counter
2 ages = [22, 22, 25, 25, 30, 24, 26, 24, 35, 45, 52, 22, 22, 22, 25, 16, 11, 15, 40, 30]
3 value_counts  = counter(ages)
4 print(value_counts.most_common())

 

counter.py hosted with ❤ by github

如果读者要运行上述代码(建议使用这个高效率工具),就会得到以下输出:

[(22, 5), (25, 3), (24, 2), (30,2), (35, 1), (40, 1), (11, 1), (45, 1), (15, 1), (16, 1), (52, 1), (26, 1)]

 

按最常见的顺序排列的元组列表,其中元组中首先包含值,然后是计数。所以可以迅速地从中看到22岁是最常见的年龄,频率为5次,还有年龄只出现了一次。完成了!

defaultdict

这是笔者的最爱之一。defaultdict是在首次遇到每个键时使用默认值初始化的多功能字典。接下来是一个实例

1 from collections  import defaultdict
2 my_default_dict  = defaultdict(int)
3 for letter in'the red  fox ran as fast as it could':
4     my_default_dict[letter] +=1
5 print(my_default_dict)

 

defaultdict.py hosted with ❤ by github

返回

defaultdict(<type 'int'>,{'a': 4, ' ': 8, 'c': 1, 'e': 2, 'd': 2, 'f': 2, 'i': 1, 'h': 1, 'l': 1, 'o':2, 'n': 1, 's': 3, 'r': 2, 'u': 1, 't': 3, 'x': 1})

 

通常,当尝试访问一个不在字典中的值时,就会出现显示错误的界面。还有其他方法可以处理这个问题,但是它会添加一些多余的代码当用户希望使用默认值的时候。在上面的例子中,用int初始化了defauldict,这意味着在第一次访问时,将它假设为0,所以可以很容易地对所有字符进行计数,简洁明了。另一个常见的初始化是list,它允许用户在第一次访问时立即开始附加值。

namedtuple

namedtuple对于数据科学家的意义至关重要。接下来这个场景听起来可能十分熟悉, 由于喜欢list,所以正在进行特征工程,只需将这些特征添加到相对应的类中,然后将其输入到机器学习模型中。当得到数百个特征时,情况就会变得十分混乱。对于具体用到的特性,或引用了列表中的哪个索引模棱两可。更糟糕的是,当其他人查看代码时,他们面对这一大堆的特性根本无从下手。

输入namedtuples来解决这个窘境。

仅仅只需要多写几行代码,混乱的列表立刻就会恢复秩序。如下图所示

1 from  collections import namedtuple
2 features  = namedtuple('features', ['age', 'gender', 'name'])
3 row =  features(age=22, gender='male', name='alex')
4 print(row.age)

 

namedtuple.py hosted with ❤ by github

如果要运行这段代码,它就会印出“22”的字样,即特征用户存储在行中的年龄。简直不可思议!现在,大可不必使用索引来访问,取而代之的是一些易于理解的名称,这大大提高了代码的可维护性和整洁度。

这些功能都有助于编写更加简洁的代码。

看到这里,读者应该对collections库和它的一些很棒的功能有了一些了解,赶紧使用起来吧!

你会惊讶地发现它们很多隐藏的用处,以及它给你的代码带来的质的改变。

尽情享受它们带来的便利!

动动你的小手手,一起来试试吧~