欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

webrtc Histogram(直方图) 算法研究

程序员文章站 2022-07-01 17:39:14
...

webrtc Histogram(直方图) 算法研究

说明:Histogram被使用在neteq的DelayManager使用,被用做计算网络延迟。

关键数据结构:

 private:
  std::vector<int> buckets_;
  int forget_factor_;  // Q15
  const int base_forget_factor_;
  int add_count_;
  const absl::optional<double> start_forget_weight_;

buckets_ 桶,每一个桶代表数组索引个单位的延迟的百分比使用Q30表示(Q30代表定点数表示浮点数的方法,具体实现可以百度),所有桶相加的和为100% 如:

buckets_[1]=10% 一个单位延迟的包占比10%

buckets_[2]=20% 两个单位延迟的包占比20%

buckets_[3]=30% 三个单位延迟的包占比30%

forget_factor_ 遗忘因子,每一次跟新数据时需要遗忘的百分比。

base_forget_factor_最终趋向的稳定遗忘因子。

add_count_ 所有的样本的累加数。

网络延迟统计算法:

void Histogram::Add(int value) {
  RTC_DCHECK(value >= 0);
  RTC_DCHECK(value < static_cast<int>(buckets_.size()));
  int vector_sum = 0;  // Sum up the vector elements as they are processed.
  // Multiply each element in |buckets_| with |forget_factor_|.
  //统计所有的bucket并使用遗忘因子进行遗忘
  for (int& bucket : buckets_) {
    bucket = (static_cast<int64_t>(bucket) * forget_factor_) >> 15;
    vector_sum += bucket;
  }

  // Increase the probability for the currently observed inter-arrival time
  // by 1 - |forget_factor_|. The factor is in Q15, |buckets_| in Q30.
  // Thus, left-shift 15 steps to obtain result in Q30.
  //使用(1-forget_factor_)更新最新的buckets_所占百分比,注意这个buckets_是Q30表示,而forget_factor_是Q15
  buckets_[value] += (32768 - forget_factor_) << 15;
  vector_sum += (32768 - forget_factor_) << 15;  // Add to vector sum.

  // |buckets_| should sum up to 1 (in Q30), but it may not due to
  // fixed-point rounding errors.
  //将vector_sum的值维持在1的大小
  vector_sum -= 1 << 30;  // Should be zero. Compensate if not.
  if (vector_sum != 0) {
    // Modify a few values early in |buckets_|.
    int flip_sign = vector_sum > 0 ? -1 : 1;
    for (int& bucket : buckets_) {
      // Add/subtract 1/16 of the element, but not more than |vector_sum|.
      int correction = flip_sign * std::min(std::abs(vector_sum), bucket >> 4);
      bucket += correction;
      vector_sum += correction;
      if (std::abs(vector_sum) == 0) {
        break;
      }
    }
  }
  RTC_DCHECK(vector_sum == 0);  // Verify that the above is correct.

  ++add_count_;

  // Update |forget_factor_| (changes only during the first seconds after a
  // reset). The factor converges to |base_forget_factor_|.
  //使用自定义权重更新
  if (start_forget_weight_) {
    if (forget_factor_ != base_forget_factor_) {
      int old_forget_factor = forget_factor_;
      int forget_factor =
          (1 << 15) * (1 - start_forget_weight_.value() / (add_count_ + 1));
      forget_factor_ =
          std::max(0, std::min(base_forget_factor_, forget_factor));
      // The histogram is updated recursively by forgetting the old histogram
      // with |forget_factor_| and adding a new sample multiplied by |1 -
      // forget_factor_|. We need to make sure that the effective weight on the
      // new sample is no smaller than those on the old samples, i.e., to
      // satisfy the following DCHECK.
      RTC_DCHECK_GE((1 << 15) - forget_factor_,
                    ((1 << 15) - old_forget_factor) * forget_factor_ >> 15);
    }
  } else {//使用默认更新方式
    forget_factor_ += (base_forget_factor_ - forget_factor_ + 3) >> 2;
  }
}

1.统计所有bucket * forget_factor_ 的值
vector_sum=n=0buckets.size()buckets_[n]×forget_factor_ vector\_sum = \sum_{n=0}^{buckets_.size()} buckets\_[n] \times forget\_factor\_
2.增加新到bucket 值的权重
buckets_[value]=buckets_[value]+(1forget_factor_) buckets\_[value] = buckets\_[value] + (1-forget\_factor\_)

vector_sum=vector_sum+(1forget_factor_) vector\_sum = vector\_sum + (1-forget\_factor\_)

3.将vector_sum的值维持在1,这是由于浮点转定点的计算误差导致
vector_sum=1vector_sumbuckets_[n]={buckets_[n]Min(vector_sum,buckets_[n]/16)  if(vector_sum>0)buckets_[n]+Min(vector_sum,buckets_[n]/16)  if(vector_sum<0) vector\_sum = 1-vector\_sum \\ buckets\_[n]=\begin{cases} buckets\_[n] - Min(|vector\_sum|, buckets\_[n]/16) \ \ if(vector\_sum>0)\\ \\ buckets\_[n] + Min(|vector\_sum|, buckets\_[n]/16) \ \ if(vector\_sum<0)\end{cases}
4.更新forget_factor_, 使遗忘因子forget_factor_逼近base_forget_factor_(DelayManager使用start_forget_weight_进行更新,start_forget_weight_ = 2,base_forget_factor_=0.9993, )

​ 使用自定义start_forget_weight_更新
add_count_=add_count_+1forget_factor_=1(start_forget_weight_/(add_count_+1))forget_factor_=Max(0,Min(base_forget_factor_,forget_factor)) add\_count\_ = add\_count\_ + 1 \\ forget\_factor\_ = 1 - (start\_forget\_weight\_/(add\_count\_ + 1)) \\ forget\_factor\_ = Max(0,Min(base\_forget\_factor\_, forget\_factor))
​ 使用默认方式更新(其中的+3让人比较容易误解,这个3是Q30的没有多大)
forget_factor_=forget_factor_+(base_forget_factor_forget_factor_+0.000091552734375)/4 forget\_factor\_ = forget\_factor\_ + (base\_forget\_factor\_ - forget\_factor\_ + 0.000091552734375) / 4

获取当前的延迟:

int Histogram::Quantile(int probability) {
  // Find the bucket for which the probability of observing an
  // inter-arrival time larger than or equal to |index| is larger than or
  // equal to |probability|. The sought probability is estimated using
  // the histogram as the reverse cumulant PDF, i.e., the sum of elements from
  // the end up until |index|. Now, since the sum of all elements is 1
  // (in Q30) by definition, and since the solution is often a low value for
  // |iat_index|, it is more efficient to start with |sum| = 1 and subtract
  // elements from the start of the histogram.
  int inverse_probability = (1 << 30) - probability;
  size_t index = 0;        // Start from the beginning of |buckets_|.
  int sum = 1 << 30;       // Assign to 1 in Q30.
  sum -= buckets_[index];

  while ((sum > inverse_probability) && (index < buckets_.size() - 1)) {
    // Subtract the probabilities one by one until the sum is no longer greater
    // than |inverse_probability|.
    ++index;
    sum -= buckets_[index];
  }
  return static_cast<int>(index);
}

依据这个probability这个百分比取获取延迟,
n=0Bbuckets_[n]>probability \sum_{n=0}^{B} buckets\_[n] > probability
统计满足probability概率的索引值,记为B,并将B返回。

DelayManager中使用Histogram的参数

struct DelayHistogramConfig {
  int quantile = 1041529569;  // 0.97 in Q30.
  int forget_factor = 32745;  // 0.9993 in Q15.
  absl::optional<double> start_forget_weight = 2;
};
相关标签: webrtc