欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TF之p2p:基于TF利用p2p模型部分代码实现提高图像的分辨率

程序员文章站 2022-07-01 15:28:34
...

TF之p2p:基于TF利用p2p模型部分代码实现提高图像的分辨率

一、tfimage.py文件功能解释

1、此处的create_op就调用了tf.get_default_session().run()方法,可以将Tensor 操作的函数转变为对Numpy 数组操作的函数,转换后的函数输出为Numpy的数组,而不是Tensor。例如,下面的decode_jpeg和decode_png。

def create_op(func, **placeholders):
    op = func(**placeholders)

    def f(**kwargs):
        feed_dict = {}
        for argname, argvalue in kwargs.items():
            placeholder = placeholders[argname]
            feed_dict[placeholder] = argvalue
        return tf.get_default_session().run(op, feed_dict=feed_dict)

    return f


decode_jpeg = create_op(
    func=tf.image.decode_jpeg,
    contents=tf.placeholder(tf.string),
)

decode_png = create_op(
    func=tf.image.decode_png,
    contents=tf.placeholder(tf.string),
)

2、tfimage.py里使用decode_jpeg和deco de_png定义了一个load函数。load函数的输入是一个图片文件路径,返回的是numpy. ndarray 形式的图像数据。

def load(path):
    with open(path, "rb") as f:
        contents = f.read()
        
    _, ext = os.path.splitext(path.lower())

    if ext == ".jpg":
        image = decode_jpeg(contents=contents)
    elif ext == ".png":
        image = decode_png(contents=contents)
    else:
        raise Exception("invalid image suffix")

    return to_float32(image=image)

3、还利用create_op函数定义了若干函数

rgb_to_grayscale = create_op(
    func=tf.image.rgb_to_grayscale,
    images=tf.placeholder(tf.float32),
)

……

crop = create_op(
    func=tf.image.crop_to_bounding_box,
    image=tf.placeholder(tf.float32),
    offset_height=tf.placeholder(tf.int32, []),
    offset_width=tf.placeholder(tf.int32, []),
    target_height=tf.placeholder(tf.int32, []),
    target_width=tf.placeholder(tf.int32, []),
)

pad = create_op(
    func=tf.image.pad_to_bounding_box,
    image=tf.placeholder(tf.float32),
    offset_height=tf.placeholder(tf.int32, []),
    offset_width=tf.placeholder(tf.int32, []),
    target_height=tf.placeholder(tf.int32, []),
    target_width=tf.placeholder(tf.int32, []),
)

 

二、process.py添加一个新操作

1、process.py 的主处理函数process 使用了上述load 函数读入图片,接着做了一些处理后保存。

def process(src_path, dst_path):
    src = im.load(src_path)

    if a.operation == "grayscale":
        dst = grayscale(src)
    elif a.operation == "resize":
        dst = resize(src)
    elif a.operation == "blank":
        dst = blank(src)
    elif a.operation == "combine":
        dst = combine(src, src_path)
    elif a.operation == "edges":
        dst = edges(src)
    elif a.operation == "blur":
        dst = blur(src)
    else:
        raise Exception("invalid operation")

    im.save(dst, dst_path)

2、添加新的函数