欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

HDU2837 Calculation(扩展欧拉定理)

程序员文章站 2022-07-01 09:12:13
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3121 Accepted Submission(s): 778 Problem Descript ......

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3121    Accepted Submission(s): 778


Problem Description
Assume that f(0) = 1 and 0^0=1. f(n) = (n%10)^f(n/10) for all n bigger than zero. Please calculate f(n)%m. (2 ≤ n , m ≤ 10^9, x^y means the y th power of x).
 

 

Input
The first line contains a single positive integer T. which is the number of test cases. T lines follows.Each case consists of one line containing two positive integers n and m.
 

 

Output
One integer indicating the value of f(n)%m.
 

 

Sample Input
2 24 20 25 20
 

 

Sample Output
16 5
 

 

Source
 

 

Recommend
gaojie   |   We have carefully selected several similar problems for you:       
 
$a^x \equiv a^{x \  \% \  phi(m) + phi(m)} \pmod m$
然后直接上就行了。
有很多奇怪的边界问题,比如求$f(n)$的时候一模就炸。。
 
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define int long long 
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, PhiM;
int fastpow(int a, int p, int mod) {
    if(a == 0) return p == 0;
    int base = 1;
    while(p) {
        if(p & 1) base = (base * a) % mod;
        p >>= 1; a = (a * a) % mod;
    }
    return base == 0 ? mod : (base + mod)% mod;
}
int GetPhi(int x) {
    int limit = sqrt(x), ans = x;
    for(int i = 2; i <= limit; i++) {
        if(!(x % i)) ans = ans / i * (i - 1) ;
        while(!(x % i)) x /= i;
    }
    if(x > 1) ans = ans / x * (x - 1);
    return ans;
}
int F(int N, int mod) {
    if(N < 10) return N;
    return fastpow((N % 10), F(N / 10, GetPhi(mod)), mod);
}
main() { 
    int QwQ = read();
    while(QwQ--) {
        N = read(); M = read();
        printf("%I64d\n", F(N, M));
    }
    return 0;
}
/*
4
24 20
37 25
123456 321654
123456789 456789321
*/