计算几何学
程序员文章站
2022-02-05 19:26:41
...
计算几何学基础知识,以及基础问题讲解链接
凸包实现代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#include <cstring>
#include <cmath>
#include <stack>
using namespace std;
#define MaxNode 1015
int Stack[MaxNode];
int top;
typedef struct POINT
{
double x;
double y;
}POINT;
POINT point[MaxNode];
void swap(POINT point[],int i,int j)
{
POINT tmp;
tmp=point[i];
point[i]=point[j];
point[j]=tmp;
}
double multi(POINT p1,POINT p2,POINT p0) //叉乘
{
return ((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x));
}
double distence(POINT p1,POINT p2) //p1,p2的距离
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
int cmp(const void *a,const void *b)
{
POINT *c=(POINT *)a;
POINT *d=(POINT *)b;
double k=multi(*c,*d,point[0]);
if(k<0) return 1;
else if(k==0&&distence(*c,point[0])>=distence(*d,point[0])) return 1; //极角相同,比距离
else return -1;
}
void grahamscan(int n)
{
int i,u;
u=0;
for(i = 1;i<= n-1;i++) //找到最左下的点p0
if((point[i].y < point[u].y)||(point[i].y==point[u].y&&point[i].x < point[u].x))
u=i;
swap(point,0,u);
qsort(point+1,n-1,sizeof(point[0]),cmp); //按极角排序
for(i = 0;i <= 2;i++) Stack[i] = i; //p0,p1,p2入栈
top=2;
for(i = 3;i <= n-1;i++) //最终凸包的各顶点的编号依次存在stack[]中。
{
while(multi(point[i],point[Stack[top]],point[Stack[top-1]])>=0) //弹出非左转的点
{
if(top==0)break;
top--;
}
top++;
Stack[top] = i;
}
}
//求凸包的面积
double polygonArea(int n,POINT p[])
{
double area;
int i;
area = 0;
for(i = 1;i <= n;i++){
area += (p[Stack[i - 1]].x * p[Stack[i % n]].y - p[Stack[i % n]].x * p[Stack[i - 1]].y);
}
return fabs(area) / 2;
}
double polygonLength(){
double ans = 0;
for(int i = 0;i < top; i++){
ans += distence(point[Stack[i]], point[Stack[i + 1]]);
}
ans += distence(point[Stack[top]], point[Stack[0]]);
return ans;
}
int main()
{
int n,d;
while(cin >> n >> d){
memset(point, 0, sizeof(point));
memset(Stack, 0, sizeof(Stack));
for(int i = 0;i < n;i++){
cin >> point[i].x >> point[i].y;
}
grahamscan(n);
}
}
判断线段是否相交(代码)
typedef struct point
{
double x;
double y;
}point;
typedef struct stick{
point begin;
point end;
int flag;
}stick;
double multi(point p1,point p2,point p0) //叉乘
{
return ((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x));
}
int cross(stick a,stick b){//是否相交,相交返回1,不相交返回0,点在线上也算相交
if(multi(a.begin,b.end,b.begin) * multi(a.end,b.end,b.begin) > 0 || multi(b.begin, a.end, a.begin) * multi(b.end, a.end, a.begin) > 0){
return 0;
}
else
return 1;
}
持续更新