欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用ForkJoin并行计算,实现一个Master-Worker并行计算框架

程序员文章站 2022-06-30 20:43:09
...

java.util.concurrent 包提供了一种将一个大任务分割成一个个小任务,并行执行这些小任务以提高效率的框架 ForkJoin。它的使用很简单,自己在程序中实现 compute() 方法即可,这个工具类也是使用空间换时间的思路。

代码清单一:ForkJoin的使用

package com.jack.jucstudy;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask;


public class UseForkJoinTask extends RecursiveTask<Long>{
	private static final int THRESHORD = 2;
	private Integer start;
	private Integer end;
	public UseForkJoinTask(Integer start, Integer end) {
		super();
		this.start = start;
		this.end = end;
	}
	public static void main(String[] args) throws InterruptedException, ExecutionException {
		long start = System.currentTimeMillis();
		ForkJoinPool pool = new ForkJoinPool();
		UseForkJoinTask ufj = new UseForkJoinTask(0,10000000);
		Future<Long> submit = pool.submit(ufj);
		long end = System.currentTimeMillis();
		System.out.println(String.format("使用forkJoinTask执行的结果为:%s,使用的时间为:%s毫秒", submit.get(),end - start));
		
		start = System.currentTimeMillis();
		long sum = 0;
		for(int i = 0; i <= 10000000; i++) {
			sum += i;
		}
		end = System.currentTimeMillis();
		System.out.println(String.format("使用普通的for循环执行的结果为:%s,使用的时间为:%s毫秒", sum,end - start));
	}

	@Override
	protected Long compute() {
		long sum = 0;
		boolean canCompute = (end - start) <= THRESHORD;
		if(canCompute) {
			for(int i = start; i <= end; i++) {
				sum += i;
			}
		}else {
			int middle = (start + end) / 2;
			UseForkJoinTask leftTask = new UseForkJoinTask(start, middle);
			UseForkJoinTask rightTask  = new UseForkJoinTask(middle + 1, end);
			//执行拆分
			leftTask.fork();
			rightTask.fork();
			//执行结果合并
			Long leftResult = leftTask.join();
			Long rightResult = rightTask.join();
			sum = leftResult + rightResult;
		}
		return sum;
	}

}

运行结果:

使用ForkJoin并行计算,实现一个Master-Worker并行计算框架

从结果可以看出,使用并行计算的方式确实可以大大提升效率。


自己实现一个并行计算的框架:Master-Worker模式

使用ForkJoin并行计算,实现一个Master-Worker并行计算框架

上图是Master-Worker原理的示意图,在客户端传入了很多的Task,Master需要将这些存储在一个任务队列中,然后分发给各个Worker,每个Worker是一个工作线程,这种模式也是一种并行计算模式,以空间换时间的思想提高效率。

代码清单二:Task类

package com.jack.jucstudy.masterworker;

public class Task {
	
	private String taskId;
	
	private Integer count;
	
	public Task(String taskId, Integer count) {
		super();
		this.taskId = taskId;
		this.count = count;
	}

	public String getTaskId() {
		return taskId;
	}

	public void setTaskId(String taskId) {
		this.taskId = taskId;
	}

	public Integer getCount() {
		return count;
	}

	public void setCount(Integer count) {
		this.count = count;
	}
	

}

代码清单三:Worker类

package com.jack.jucstudy.masterworker;

import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;

public class Worker implements Runnable {
	
	private ConcurrentLinkedQueue<Task> taskQuere;
	
	private ConcurrentHashMap<String, Integer> resultMap;
	
	private CountDownLatch countDownLatch;
	
	private Random random = new Random();
	
	@Override
	public void run() {
		while(true) {
			//worker具体执行任务的地方
			Task task = taskQuere.poll();
			if(task == null) break;
			System.out.println(Thread.currentThread().getName() + "开始执行任务--" + task.getTaskId());
			try {
				//执行任务的耗时
				Thread.sleep(200 * random.nextInt(10));
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
			resultMap.put(task.getTaskId(), task.getCount());
			countDownLatch.countDown();
		}
	}

	public void setTaskQuere(ConcurrentLinkedQueue<Task> taskQuere) {
		this.taskQuere = taskQuere;
	}

	public void setResultMap(ConcurrentHashMap<String, Integer> resultMap) {
		this.resultMap = resultMap;
	}

	public void setCountDownLatch(CountDownLatch countDownLatch) {
		this.countDownLatch = countDownLatch;
	}
	
}

代码清单四:Master类

package com.jack.jucstudy.masterworker;

import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;

public class Master {
	//定义一个任务队列用于盛装一个个任务
	private ConcurrentLinkedQueue<Task> taskQueue = new ConcurrentLinkedQueue<>();
	//存放worker的容器
	private Map<String, Thread> workers = new HashMap<>();
	//存放结果的容器,由于任务是并发执行的,可能存在线程安全问题,因此使用ConcurrentHashMap
	private ConcurrentHashMap<String, Integer> resultMap = new ConcurrentHashMap<>();
	//使用juc工具类 CountDownLatch,当所有的线程完成之后通知主线程。
	private CountDownLatch countDownLatch;
	
	public Master(int workerCount, int taskCount) {
		countDownLatch = new CountDownLatch(taskCount);
		Worker worker = new Worker();
		worker.setResultMap(resultMap);
		worker.setTaskQuere(taskQueue);
		worker.setCountDownLatch(countDownLatch);
		for(int i = 0; i < workerCount; i++) {
			this.workers.put(Integer.valueOf(i).toString(), new Thread(worker));
		}
	}
	/**
	 * 添加任务的方法
	 * @param task
	 */
	public void addTask(Task task) {
		taskQueue.add(task);
	}
	/**
	 * Master开始执行,让所有的worker跑起来
	 */
	public void Execute() {
		for(Entry<String, Thread> entry:workers.entrySet()) {
			entry.getValue().start();
		}
	}
	/**
	 * 统计结果,只有当所有的任务都完成之后才能统计结果。
	 * 使用 countDownLatch.await(); 所有的任务完成之后通知这个线程去统计结果
	 * @return
	 */
	public int getResult() {
		try {
			countDownLatch.await();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		System.out.println("所有的任务已执行完成,开始统计结果");
		int ret = 0;
		for(Entry<String,Integer> e:resultMap.entrySet()) {
			ret += e.getValue();
		}
		return ret;
	}
	
	

}

代码清单五:测试类

package com.jack.jucstudy.masterworker;

import java.util.Random;

public class MainTest {
	public static void main(String[] args) {
		Random r = new Random();
		int taskCount = 100;
		//根据电脑核数创建worker数量
		Master m = new Master(Runtime.getRuntime().availableProcessors(), taskCount);
		//创建任务
		for(int i = 0; i < taskCount; i++) {
			Task t = new Task("task-" + i,r.nextInt(20));
			m.addTask(t);
		}
		long start = System.currentTimeMillis();
		m.Execute();
		int ret = m.getResult();
		long end = System.currentTimeMillis();
		System.out.println("执行100个任务耗时:" + (end - start) + "ms,统计的结果为:" + ret);
	}
}