欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

梦想家扎克伯格为Facebook插上人工智能之翼

程序员文章站 2022-06-30 20:15:36
本文为科技“易语中的”专稿,未经授权或签约不得转载。文/郑娟娟写在前面:目前,Facebook的月活跃用户数已经达到 17.9 亿,11月它的市值达到3456.4亿美元。雄心勃...

梦想家扎克伯格为Facebook插上人工智能之翼

本文为科技“易语中的”专稿,未经授权或签约不得转载。

文/郑娟娟

写在前面:目前,Facebook的月活跃用户数已经达到 17.9 亿,11月它的市值达到3456.4亿美元。雄心勃勃的Facebook对于未来10年有一个宏大的计划:连接世界、人工智能(AI)、虚拟现实与增强现实。人工智能,是这个计划的核心。笔者将从Facebook为何开发AI,成立两个AI实验室(FAIR和AML),传播免费的AI技术,以及Facebook的AI主攻方向四个方面详细阐述其在AI方面的部署与动态。

社交网站Facebook的创始人——年轻有为的马克扎克伯格是个雄心满怀的梦想家。

他是哈佛大学计算机和心理学专业的辍学生,在哈佛时代,扎克伯格就被誉为“程序神人”。2004年,他创立了Facebook,当时的目的很简单,为了在网络上将人与人之间连接起来。Facebook起初只在哈佛校内使用,后来又推广到斯坦福、哥伦比亚等大学,很快Facebook就越来越开放,据称在2004年年底,用户数量已经达到100万。为了专心经营Facebook,扎克伯格选择了退学。哈佛少了一个天才学生,世界多了一个伟大的社交网站领袖。

为什么用伟大来形容扎克伯格?过分吗?笔者认为并不过分。因为年轻的扎克伯格真的做到了他创建网站的目的,通过简单的方式,跨越距离和时间的障碍,将世界上的人与人连接起来。

根据上个月Facebook发布的2016年Q3季度财报显示,Facebook 该季度月活跃用户数已经达到 17.9 亿——根据联合国人口司2016年10月26日的数据,地球上生活着72.6亿人,也就是说,几乎每4个人中就有1个是Facebook的活跃用户,Facebook现在连接着世界上近四分之一的人口,未来这个数字应该还会增长。(由于国情的原因,笔者曾经的Facebook账号现在也无法登陆啦!目前中国这个十几亿的人口大国不对它开放。但这并不会降低Facebook在世界其他地区的影响力。这样一个成功的公司是值得我们研究和借鉴的。)

一、远见

年轻的扎克伯格敢想敢干。2016年4月13日,在Facebook F8 年度开发者大会上,扎克伯格正式公布了 Facebook 未来发展的 10 年规划。

从这张规划图中,我们可以看到扎克伯格设计的发展路线:

未来 3 年:构建 Facebook 生态系统(ecosystems);

未来 3 -5 年:继续视频、Messenger、搜索、WhatsApp、群组和Instagram 等产品的开发;

未来 5 到 10 年:三大方向——

1、连接世界:主要致力于连接全球近40亿无网可上的人。简单来说,就是想让全世界的人都可以上网,并且想让他们上网后都使用Facebook进行社交联络;

2、人工智能(AI):解决部分核心问题,构建真正智能的计算机系统,这也是Facebook连接世界的重要技术支撑;

3、虚拟现实与增强现实:通过技术让远隔千里的人们也能感觉身处一处。

在今年8月15日《福布斯》网站发布的文章《Facebook's 10-Year Plan: Connectivity, Artificial Intelligence, And Virtual Reality(Facebook的10年计划:连接世界、人工智能和虚拟现实)》中,Peter High采访了Facebook首席技术官(CTO)Mike Schroepfer。文中,Peter问到Facebook未来10年的三大方向是如何选出来的,Mike说,“很多都直接来自于扎克伯格,”“源自让世界变得更加开放、更加互联的使命。”

的确,扎克伯格的远见正源于这种极为开放和互联的思想。

2004年,扎克伯格白手起家,Facebook从大学宿舍迅速走向世界,到上个月,根据砺石发布的“全球企业市值100强(11月版)”,Facebook的市值已达到3456.4亿美元。根据Facebook2016年Q3季度财报,除了月活跃用户数已达到 17.9 亿的巨大数字,该季度日活跃用户数从上个季度的 11.3 亿增至 11.8 亿,Facebook 移动端月活跃用户数达 16.6 亿;另外,该季度移动端用户达到 10.55 亿,再创一个10 亿用户的里程碑。在该季度财报电话会议上,扎克伯格还宣布了Facebook发起的Internet.org 项目已经帮助全球 4000 万人用上了互联网,高于一年前的 1500 万。在这一系列巨大成就之下,反观Facebook的未来10计划,一切又似乎刚刚开始。

去年10月,扎克伯格在清华经管学院的演讲中提到,自己创立Facebook最重要的是找到人与人连接的方法。他说,十年前,我们的目标是连接十亿人。当达到了这个目标,我们开始明白十亿只是一个数字,我们真正的目标是连接世界上的每个人。

去年12月,扎克伯格喜得一女,夫妇二人在给女儿的长信中承诺,将在有生之年把扎克伯格持有的99%的Facebook股份捐出,用以发展人类潜能和促进平等。

为了扩大互联网的覆盖范围,成立Internet.org项目时,扎克伯格告诉董事会,这个项目要花费十亿多美元。他说,我不知道这个项目怎么赚钱,但我知道,连接人是我们的使命。我们必须向前看,如果我们帮助人们,未来,我们也会获益。

在这个连接全世界的计划中,Facebook已经与多家移动运营商合作,同时,它还在建造无人机和卫星,向传统方式无法提供网络服务的偏远山区提供上网帮助,最终,Facebook希望在商业航班航道以上的高空部署无人机舰队和卫星,向地球上大部分地区提供网络服务。

这一系列庞大的、遍布全球的基础设施建设,只是Facebook十年规划的第一步。能够使Facebook更加迅猛地展翅翱翔的,是第二步,也是核心——AI。

二、征程

Facebook为何要开发AI ?

一次在线问答活动中,扎克伯格在回答用户提问时阐述了Facebook为什么要做AI。他说,“我们研究AI,是因为我们认为更加智能的服务用处更大。”

扎克伯格认为AI能够帮助Facebook更加了解用户需求。——对于社交网站来说,了解每一个用户的需求,提供个性化服务,是非常重要的,这样可以增加用户黏性,既为用户提供良好的个人体验,实现运营网站的初衷,又能维持网站高额的广告收入。

不仅如此,扎克伯格还希望Facebook能成为全球AI的中心。他说,这项技术能影响所有人与人之间的交互方式,也会对Instagram、WhatsApp和Messenger等一切社交工具带来变革。Facebook工程学副总裁Jay Parikh曾表示,在万物互联的时代,“世界上发生的一切所产生的数据都会大幅增加,10倍、20倍甚至50倍,当前的传统模式和系统都将无法支撑。这需要真正的AI来协助处理。”现在,AI技术正在使计算机变得更加高效,并使我们能够在前所未见的超大尺度上建立各种系统。从某种程度上说,扎克伯格认为AI可以成为Facebook驾驭万物互联时代的重要助手。

成立两个AI实验室

为了实现这个目标,Facebook在开发AI方面,采取了与其他科技巨头并不相同的方式——成立了两个相对独立的AI实验室开展研究:一个是Facebook’s Artificial Intelligence Research(人工智能研究实验室),简称 FAIR,由AI领域最有成就科学家之一的Yann LeCun领导;一个是Applied Machine Learning(应用机器学习部门),简称 AML,由经验非常丰富的机器学习领域的专家Joaquin Candela领导。这两个部门有着不同的分工:FAIR主要致力于AI基础科学和长期项目的研究,AML 则主要从事将AI科研成果应用到产品中的工作。两个部门互相独立,LeCun 和 Candela 都直接向Facebook 的 CTO汇报工作;同时两个部门的办公场所也紧紧挨着,彼此之间会有人员的流动和项目的合作。

之所以建立这样的研究系统,笔者认为,扎克伯格有着明确的考虑:一方面,他想支持AI科学长期发展——不少科技公司在建立实验室方面都有失败案例,或是科研成果没有真正得到实际应用,或是过于追求眼前效益导致科研人员无法集中精力研发,科学家需要更加宽松、更少限制的研究环境(例如,如果将科学家放入工程师团队中,就很容易限制科学家的创造力),因此Facebook通过FAIR吸引科学家的加入,并允许其70%的工作进行长期科研,30%的工作完成短期的产品开发。另一方面,为了不断应对日益扩大的用户群和不断提高产品、服务的性能和质量,以及开发更多的新产品,Facebook也需要大力推动先进的AI技术在产品上的最大化应用,因此他们成立了AML作为科研成果与产品开发之间的粘合剂。

LeCun现在仍是纽约大学计算机科学的兼职教授,他是深度学习的分支——卷积神经网络(convolutional neural nets)的奠基人之一。LeCun加入Facebook并非偶然,在价值观上,他与扎克伯格都有一点极其相似:他们都坚信,成功的关键在于秉承开放的理念。这个开放的理念给Facebook带来了大量的人才也收获了丰富的成果。Facebook的CTO Mike Schroepfer就曾公开表示,“研究与科学都需要尽可能地在开放环境中完成。”在AI研发的路上,Facebook到目前为止都在践行这样一个理念:传播免费的AI技术。“公布AI技术能够让它更加普及,”Schroepfer强调,Facebook认为技术共享与独自开发相比能让所有人更快地受益,LeCun也一直认为,没有必要去发明已经存在的技术,共享新技术可以节约更多的时间探索新技术。

传播免费的AI技术——开源

在Facebook目前已经开源的AI清单中,既包括软件,也包括硬件。

先说说它的硬件开源。去年年底,Facebook宣布开源它的AI硬件平台Big Sur。Big Sur的设计特点是主板易于维修,带有8个NVIDIA(英伟达)的Tesla M40 GPU(GPU是用于深度学习算法的微处理器,每个GPU包含数十个功耗300瓦的芯片,是专为执行复杂的数学和几何计算而设计的)。Big Sur可以操控计算机,以类似人脑神经网络的方式理解及使用数据。通过Big Sur,Facebook希望使AI技术能够阅读新闻、回答问题,以及操作游戏,免去人工的介入。开源硬件平台的好处不仅在于可以加速AI技术的发展,对Facebook来说,还可以快速在业界建立自己的硬件标准,摊平成本,提高其普及率。

软件方面,虽然Facebook涉足AI领域没有几年的时间,但短短数年中其开源项目却越来越多,从中,我们也可以看到Facebook巨大的实力和更大的潜力。由于篇幅所限,在此仅举几例。

2015年1月,FAIR开源了一系列软件库,该软件库在 Facebook 被称作模块。用它们替代机器学习领域常用的Torch 的默认模块,可在更短时间内训练更大规模的神经网络模型。Facebook的模块一部分可用于训练大型计算机视觉系统,一部分模块可以用来训练不同类型数据的模型。部分模块还把大型卷积神经网络模型的训练速度提升了23.5 倍。

2016年6月,Facebook开源基于Torch的深度学习框架Torchnet。近年来有关机器学习的框架层出不穷,比较著名的有Caffe、Theano、Torch等。主流的机器学习框架Torch不能执行抽象和公式化(boilerplate)的代码实现,因此研究人员不得不重复执行一些算法的实验。Facebook在Torch的基础上,提供了一种可抽象和公式化逻辑的开源框架Torchnet,可以模块化编程和代码重复使用,从而减少Bug,并直接使用异步数据加载和高效多GPU运算。Torchnet 是用 Lua 脚本语言写成的(Lua由标准C编写而成,几乎在所有操作系统和平台上都可以编译和运行),易于集成安装于任何架构中。它对于想要训练大规模深度学习系统的机构来说,可以大幅节省I/O的成本。

2016年8月,Facebook开源文本分类专用工具fastText。fastText是一款快速文本分类器,提供简单高效的文本分类和表征学习的方法,Facebook称fastText比其他学习方法要快得多,能够训练模型在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇,与深度模型对比,fastText能将训练时间由数天缩短到几秒钟。此外,通过利用语言的形态结构,fastText可以支持多国语言,包括英语、德语、西班牙语、法语及捷克语。

同样在8月,Facebook又开源了三款机器视觉工具——DeepMask 分割构架、SharpMask 分割精炼模块和MultiPathNet 的代码。人们看一张图片时,可以将物体识别到最后一个像素。FAIR致力于将机器视觉推进到新阶段——在像素的层面上理解图像和物体。FAIR称,最近正在设计能够识别和分割图像中每个物体的技术,它将带来很多全新的应用,推动FAIR进步的最主要的新算法是 DeepMask 分割构架和SharpMask 分割精炼模块。它们使FAIR 的机器视觉系统可以探测并精确勾画出图片中所有物体的轮廓。在识别过程的最后阶段,FAIR使用的是一个特定的卷积网络 MultiPathNet,它可以标记出每个物体掩码(mask)所含有的物体类型(例如人、狗、羊)。Facebook的此次开源是希望它能帮助机器视觉领域快速发展。

Facebook的AI主攻方向

今年11月3日,Business Insider发表了对Yann LeCun进行的专访,访问中,LeCun介绍了FAIR的主要任务是推进AI科学与技术,通过实验发展AI技术在各领域的应用,例如计算机视觉、对话系统、虚拟助手、语音识别、自然语言识别等等。他也谈到了AML的主要方向是将科学转化为技术,通过构建应用平台,将AI服务变为产品团队可以使用的东西。

LeCun提到了一个非常重要的问题,也是Facebook目前面临的最大问题,时刻需要解决的问题——就是将最好的内容向呈现给每个用户。为了解决这个问题,Facebook必须理解内容,理解每个用户,然后把内容和对它感兴趣的人相连接。只有做到这一点,人们才会选择Facebook的News Feed。

谈到News Feed,它可以说是Facebook的功臣。10年前,Facebook上线了这一功能,它是Facebook借助算法调整用户打开其网页后看到的一切内容,包括朋友的状态更新、重要新闻推送等。10年间,这一功能为Facebook留下了大量用户,人们使用该网站的次数和时间也都大幅提升。它不仅改变了欧美地区的新闻传播方式,改变了社交媒体盈利模式,甚至影响了人们的在线行为习惯。当然,不得不说的是,在最近结束的美国大选季中,News Feed也被公认为极大地影响了选举结果。(在笔者11月24日的作品《揭秘:脸书假新闻背后的真问题到底是什么》中,详细分析了News Feed的假新闻问题,有兴趣的读者可以选择阅读。)

这个功臣所面临的问题也恰恰涉及了AI对于Facebook的重要性问题——在解决News Feed的假新闻问题的举措中,扎克伯格列出的第一点就是通过建立更好的技术系统,提高分辨错误信息的能力,在人们举报前就检测出错误信息。无疑,提高检测技术需要更多地依靠AI,相信这也会成为Facebook的AI实验室重点研究项目之一。如果不能很好地解决假新闻的问题,Facebook就会渐渐丧失用户的信赖程度,这个问题也会成为用户流失的一大隐患。

因此,对于Facebook的AI研究来说,不仅仅是将内容与用户的兴趣匹配,还要提前进行筛查,筛去假新闻和错误信息。难度不校

作为FAIR的领导者,LeCun更多地考虑到AI发展的远期目标,那就是建立一个真正的智能机器。它可以与人直接对话,回答任何问题,并对人们的生活提供帮助。这件事对当今的AI而言非常具有挑战性。迎接这个挑战,首要解决的是让机器学会人类的常识。

因此,FAIR设立了一个目标:教会机器常识。让机器能够像婴儿或动物那样学习。LeCun表示,FAIR目前最大的项目是对话系统的自然语言理解,它也将成为 Facebook智能语音助手的基矗

去年,Facebook推出了自己的虚拟助手“M”。不过它目前还处于测试阶段,它的主要功能设定为,用户向 M 发送文字消息,它就能帮助购买商品、寄送礼物、预订餐厅、安排旅行和约会等。目前支持M运行的并不是完全的AI,而是机器加人工的系统。通过AI对文本进行语义分析之外,还有一个用来训练和监督AI系统的真人团队。在测试阶段,用户不断与 M 对话,其实就是和人工团队一起,用信息喂养这个AI系统。

Facebook一直在想办法让机器人变得更加智能,为此,他们正在开发一个重要的项目:记忆网络(memory network)。记忆网络能够将机器学习的算法,尤其是神经网络,和工作记忆(working memory)结合起来,使聊天机器人能在给定的语境中存储、检索信息。今年,Facebook提出了一个新方法,关键值记忆网络(key-value memory networks)。这个新方法不仅能使聊天机器人存储相关的源数据,还能存储用户提问过的问题以及它所给出的答复。目前Facebook已经将记忆网络应用在了M中。

CTO Mike Schroepfer曾把记忆称作AI缺失的部分。FAIR的研究员,记忆网络相关论文的作者Antoine Bordes则谈到,他相信记忆网络是构建能与人类自然交互的聊天机器人的关键。

除了这些研究成果,Facebook还有不少惊艳的AI产品。例如,用AI打造“人口地图”积极普及互联网。今年3月,扎克伯格称,为开发出更精确的人口地图,Facebook通过AI对156亿张卫星图片进行分析。地图绘制完成后可以共享,这将有利于规划中的能源、医疗及交通基础设施的建设。

今年4月,Facebook在iOS平台上线了一项新功能,iPhone用户只要开启辅助功能中的VoiceOver,在使用Facebook时,图片内容就会被“读”出来。这项功能可以帮助盲人或视力低下的用户“看到”图片。

11月,Facebook在手机 App 中测试了新的相机应用,可以实时在视频中添加艺术元素,该技术被称为“风格转换”。它可以将一种艺术风格,例如梵高的画作,加入普通的图片或视频中去。与诸如Prisma一类的应用不同的是,此前的类似应用都需要把用户数据发送至数据中心,通过大型服务器进行处理。而Facebook最新开发的产品则不需这样的往返过程,它的新程序Caffe2Go,是一个完整的深度学习系统,其架构已嵌入手机App中。通过将处理图片和视频的AI模型压缩至1%的大小,Facebook已经能在iOS和安卓系统中高效运行深度学习网络。速度上,在部分手机中能够以不到50毫秒的速度完成AI任务的处理。

当然,Facebook的AI计划并不仅限于此,笔者所做的只是窥其一角,为大家提供一些参考和借鉴。

关于人工智能,科学研究还有很多路要走,但是笔者相信,随着技术的进步,这条路会越走越快。虽然对于人工智能的发展存在很多隐忧,但我们其实无法阻挡它飞速的脚步。我们可以做的,是通过各种力量、各种方式,尽量引导AI的研究在符合伦理和道德的范畴内发展,让它更多地为人类提供服务。同时,各个国家也应当不断普及新的科学技术,唯有如此,才能更多降低AI的迅速发展为就业以及其他方面带来的负面影响。

本文为作者原创,欢迎批评、指正、建议!同时也欢迎订阅笔者媒体号:“一心的未来世界”,立足当下,探索未来。接下来一段时间,笔者打算做一个天文科普的原创系列,欢迎大家留言,提供主题。