欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习入门---利用RNN实现二进制加法

程序员文章站 2022-06-30 10:21:56
...

最近在看唐宇迪的深度学习入门视频,个人觉得挺适合小白的。

以下是利用RNN实现二进制加法的代码(三层)

# 利用RNN实现八位以内二进制加法,a+b=c
# 保证c不超过八位  a,b<2^8
import copy, numpy as np
np.random.seed(0)

# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1/(1+np.exp(-x))
    return output

# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output*(1-output)


# training dataset generation
int2binary = {}
binary_dim = 8

largest_number = pow(2,binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]


# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1


# initialize neural network weights权重值初始化参数
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1

# 更新参数值
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

# training logic
for j in range(20000):
    
    # generate a simple addition problem (a + b = c)
    # 随机整数值a,b 转换为二进制
    a_int = np.random.randint(largest_number/2) # int version
    a = int2binary[a_int] # binary encoding

    b_int = np.random.randint(largest_number/2) # int version
    b = int2binary[b_int] # binary encoding

    # true answer
    c_int = a_int + b_int
    c = int2binary[c_int]
    
    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)

    overallError = 0

    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
    
    # moving along the positions in the binary encoding
    for position in range(binary_dim):
        
        # generate input and output
        X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T

        # hidden layer (input ~+ prev_hidden)
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))

        # output layer (new binary representation)
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))

        # did we miss?... if so, by how much?
        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error[0])
        # decode estimate so we can print it out
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
        
        # store hidden layer so we can use it in the next timestep
        layer_1_values.append(copy.deepcopy(layer_1))
    
    future_layer_1_delta = np.zeros(hidden_dim)
    
    for position in range(binary_dim):
        
        X = np.array([[a[position],b[position]]])
        layer_1 = layer_1_values[-position-1]
        prev_layer_1 = layer_1_values[-position-2]
        
        # error at output layer
        layer_2_delta = layer_2_deltas[-position-1]
        # error at hidden layer
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)

        # let's update all our weights so we can try again
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        future_layer_1_delta = layer_1_delta
    

    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha    

    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
    
    # print out progress
    if(j % 1000 == 0):
        print("Error:" + str(overallError))
        print("Pred:" + str(d))
        print("True:" + str(c))
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print(str(a_int) + " + " + str(b_int) + " = " + str(out))
        print("------------")

        

开始误差

深度学习入门---利用RNN实现二进制加法

迭代20000次结果:

深度学习入门---利用RNN实现二进制加法

相关标签: 日常学习