欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

七、pygame做一个简单的俄罗斯方块游戏(基础篇2)

程序员文章站 2022-06-29 11:28:10
...

接上章继续写俄罗斯方块游戏

五、计算方块之间的碰撞

在Panel类里增加函数

   def check_overlap(self, diffx, diffy):
        for x,y in self.moving_block.get_rect_arr():
            for rx,ry in self.rect_arr:
                if x+diffx==rx and y+diffy==ry:
                    return True
        return False

修改move_block函数的判断,增加check_overlap函数检测

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
        else:
            self.add_block(self.moving_block)
            self.create_move_block()

现在的效果是方块可以堆叠了
七、pygame做一个简单的俄罗斯方块游戏(基础篇2)

六、键盘控制左右移动

导入变量

from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN

Panel类里增加一个控制移动方块的函数

    def control_block(self, diffx, diffy):
        if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
            self.moving_block.move(diffx,diffy)

鼠标事件监听处做下键盘的响应

if event.type == KEYDOWN:
             if event.key == K_LEFT: main_panel.control_block(-1,0)
             if event.key == K_RIGHT: main_panel.control_block(1,0)
             if event.key == K_UP: pass # 变形过会实现
             if event.key == K_DOWN: main_panel.control_block(0,1)

由于Block类的can_move函数没有实现左右移动的判断,所以需要再对can_move
增加左右边界的处理

    def can_move(self,xdiff,ydiff):
        for x,y in self.rect_arr:
            if y+ydiff>=20: return False
            if x+xdiff<0 or x+xdiff>=10: return False
        return True

现在,左右的移动也正常了,效果图如下
七、pygame做一个简单的俄罗斯方块游戏(基础篇2)
贴下目前的代码

# -*- coding=utf-8 -*-
import random
import pygame
from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN

class Panel(object): # 用于绘制整个游戏窗口的版面
    rect_arr=[] # 已经落底下的方块
    moving_block=None # 正在落下的方块
    def __init__(self,bg, block_size, position):
        self._bg=bg;
        self._x,self._y,self._width,self._height=position
        self._block_size=block_size
        self._bgcolor=[0,0,0]
    
    def add_block(self,block):
        for rect in block.get_rect_arr():
            self.rect_arr.append(rect)

    def create_move_block(self):
        block = create_block()
        block.move(5-2,-2) # 方块挪到中间 
        self.moving_block=block

    def check_overlap(self, diffx, diffy, check_arr=None):
        if check_arr is None: check_arr = self.moving_block.get_rect_arr()
        for x,y in check_arr:
            for rx,ry in self.rect_arr:
                if x+diffx==rx and y+diffy==ry:
                    return True
        return False

    def control_block(self, diffx, diffy):
        if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
            self.moving_block.move(diffx,diffy)

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
        else:
            self.add_block(self.moving_block)
            self.create_move_block()

    def paint(self):
        mid_x=self._x+self._width/2
        pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景
        
        # 绘制已经落底下的方块
        bz=self._block_size
        for rect in self.rect_arr:
            x,y=rect
            pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
            pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
       
        # 绘制正在落下的方块
        if self.move_block:
            for rect in self.moving_block.get_rect_arr():
                x,y=rect
                pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
                pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)


class Block(object):
    def __init__(self):
        self.rect_arr=[]

    def get_rect_arr(self): # 用于获取方块种的四个矩形列表
        return self.rect_arr

    def move(self,xdiff,ydiff): # 用于移动方块的方法
        self.new_rect_arr=[]
        for x,y in self.rect_arr:
            self.new_rect_arr.append((x+xdiff,y+ydiff))
        self.rect_arr=self.new_rect_arr

    def can_move(self,xdiff,ydiff):
        for x,y in self.rect_arr:
            if y+ydiff>=20: return False
            if x+xdiff<0 or x+xdiff>=10: return False
        return True

class LongBlock(Block):
    def __init__(self, n=None): # 两种形态
        super(LongBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.rect_arr=[(1,0),(1,1),(1,2),(1,3)] if n==0 else [(0,2),(1,2),(2,2),(3,2)]

class SquareBlock(Block): # 一种形态
    def __init__(self, n=None):
        super(SquareBlock, self).__init__()
        self.rect_arr=[(1,1),(1,2),(2,1),(2,2)]


class ZBlock(Block): # 两种形态
    def __init__(self, n=None):
        super(ZBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.rect_arr=[(2,0),(2,1),(1,1),(1,2)] if n==0 else [(0,1),(1,1),(1,2),(2,2)]

class SBlock(Block): # 两种形态
    def __init__(self, n=None):
        super(SBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.rect_arr=[(1,0),(1,1),(2,1),(2,2)] if n==0 else [(0,2),(1,2),(1,1),(2,1)]

class LBlock(Block): # 四种形态
    def __init__(self, n=None):
        super(LBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(2,2)]
        elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,2)]
        elif n==2: self.rect_arr=[(0,0),(1,0),(1,1),(1,2)]
        else: self.rect_arr=[(0,1),(1,1),(2,1),(2,0)]

class JBlock(Block): # 四种形态
    def __init__(self, n=None):
        super(JBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(0,2)]
        elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,0)]
        elif n==2: self.rect_arr=[(2,0),(1,0),(1,1),(1,2)]
        else: self.rect_arr=[(0,1),(1,1),(2,1),(2,2)]

class TBlock(Block): # 四种形态
    def __init__(self, n=None):
        super(TBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        if n==0: self.rect_arr=[(0,1),(1,1),(2,1),(1,2)]
        elif n==1: self.rect_arr=[(1,0),(1,1),(1,2),(0,1)]
        elif n==2: self.rect_arr=[(0,1),(1,1),(2,1),(1,0)]
        else: self.rect_arr=[(1,0),(1,1),(1,2),(2,1)]
        

def create_block():
    n = random.randint(0,19)
    if n==0: return SquareBlock(n=0)
    elif n==1 or n==2: return LongBlock(n=n-1)
    elif n==3 or n==4: return ZBlock(n=n-3)
    elif n==5 or n==6: return SBlock(n=n-5)
    elif n>=7 and n<=10: return LBlock(n=n-7)
    elif n>=11 and n<=14: return JBlock(n=n-11)
    else: return TBlock(n=n-15)

def run():
    pygame.init()
    space=30
    main_block_size=30
    main_panel_width=main_block_size*10
    main_panel_height=main_block_size*20
    screencaption = pygame.display.set_caption('Tetris')
    screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽
    main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])

    pygame.key.set_repeat(200, 30)
    main_panel.create_move_block()

    diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒
    ticks = pygame.time.get_ticks() + diff_ticks

    while True:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                 pygame.quit()
                 exit()
            if event.type == KEYDOWN:
             if event.key == K_LEFT: main_panel.control_block(-1,0)
             if event.key == K_RIGHT: main_panel.control_block(1,0)
             if event.key == K_UP: pass # 变形过会实现
             if event.key == K_DOWN: main_panel.control_block(0,1)
       
        screen.fill((100,100,100)) # 将界面设置为灰色
        main_panel.paint() # 主面盘绘制

        pygame.display.update() # 必须调用update才能看到绘图显示

        if pygame.time.get_ticks() >= ticks:
            ticks+=diff_ticks
            main_panel.move_block()

run()

七、控制变形

变形的实现,我们对每个方块子类的初始化函数稍作修改,将获取形状做一个独立的get_shape函数,并且给每个子类增加一个变量用于记录当前形态id,用一个变量用于标识每种方块的形态数量,以T型为例,修改后代码如下

class TBlock(Block): # 四种形态
    shape_id=0
    shape_num=4
    def __init__(self, n=None):
        super(TBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]
        elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]
        elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]
        else: return [(1,0),(1,1),(1,2),(2,1)]

这样我们在Block父类里可以加一个change函数,用于变换至下一形态,由于变化时要保持原来的移动位置,我们增加sx,sy两个变量将方块移动过的位置存着,便于在变化时使用

class Block(object):
    sx=0
    sy=0
    def __init__(self):
        self.rect_arr=[]

    def get_rect_arr(self): # 用于获取方块种的四个矩形列表
        return self.rect_arr

    def move(self,xdiff,ydiff): # 用于移动方块的方法
        self.sx+=xdiff
        self.sy+=ydiff
        self.new_rect_arr=[]
        for x,y in self.rect_arr:
            self.new_rect_arr.append((x+xdiff,y+ydiff))
        self.rect_arr=self.new_rect_arr

    def can_move(self,xdiff,ydiff):
        for x,y in self.rect_arr:
            if y+ydiff>=20: return False
            if x+xdiff<0 or x+xdiff>=10: return False
        return True

    def change(self):
        self.shape_id+=1 # 下一形态
        if self.shape_id >= self.shape_num: 
            self.shape_id=0

        arr = self.get_shape()
        new_arr = []
        for x,y in arr:
            if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界
                self.shape_id -= 1
                if self.shape_id < 0: self.shape_id = self.shape_num - 1
                return None 

            new_arr.append([x+self.sx,y+self.sy])

        return new_arr

在Panel类里的再增加一个change函数,直接调用moving_block的change

    def change_block(self):
        if self.moving_block:
            new_arr = self.moving_block.change()
            if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠
                self.moving_block.rect_arr=new_arr

最后将key_up事件的响应加入change_block的调用就好了

if event.key == K_UP: main_panel.change_block()

现在已经实现了,变形和移动了,方块基本可以正常下落了
七、pygame做一个简单的俄罗斯方块游戏(基础篇2)

八、方块的消除

这个计算主要是处理Panel类的rect_arr,如果数组中出现某一行有10个就符合消除条件,为简化计算,我们将这些矩形按y值存到一个数组中,便于计算

    def check_clear(self):
        tmp_arr = [[] for i in range(20)]
        # 先将方块按行存入数组
        for x,y in self.rect_arr:
            if y<0: return
            tmp_arr[y].append([x,y])

        clear_num=0
        clear_lines=set([])
        y_clear_diff_arr=[[] for i in range(20)]
        # 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量
        for y in range(19,-1,-1):
            if len(tmp_arr[y])==10:
                clear_lines.add(y)
                clear_num += 1
            y_clear_diff_arr[y] = clear_num

        if clear_num>0:
            new_arr=[]
            # 跳过移除行,并将其他行做偏移
            for y in range(19,-1,-1):
                if y in clear_lines: continue
                tmp_row = tmp_arr[y]
                y_clear_diff=y_clear_diff_arr[y]
                for x,y in tmp_row:
                    new_arr.append([x,y+y_clear_diff])
            
            self.rect_arr = new_arr

在Panel的move_block处增加check_clear的调用

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
        else:
            self.add_block(self.moving_block)
            self.check_clear()
            self.create_move_block()

现在游戏可以消除方块了

九、增加空格键使快速落下

快速落下可以快速调用Panel的move_block函数,我们在move_block函数增加一个返回值,用于标记使正常下移还是移到底部后新的方块

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
            return 1
        else:
            self.add_block(self.moving_block)
            self.check_clear()
            self.create_move_block()
            return 2

在键盘响应处增加键盘处理

if event.key == K_SPACE:
                while main_panel.move_block()==1: 
                    pass

十、增加游戏结束判断

游戏结束同样可以在Panel类的move_block中处理,如果一个方块到底,并且消除进行后,发现有方块的y值小于0,那么一定是失败了
修改Panel类的move_block函数

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
            return 1
        else:
            self.add_block(self.moving_block)
            self.check_clear()

            for x,y in self.rect_arr:
                if y<0: return 9 # 游戏失败
            self.create_move_block()
            return 2

增加一个变量记录游戏状态

game_state = 1 # 游戏状态1.表示正常 2.表示失败

计时器处修改程序

        if game_state == 1 and pygame.time.get_ticks() >= ticks:
            ticks+=diff_ticks
            if main_panel.move_block()==9: game_state = 2

鼠标键盘响应空格键中也增加一下判断

             if event.key == K_SPACE:
                flag = main_panel.move_block()
                while flag==1: 
                    flag = main_panel.move_block()
                if flag == 9: game_state = 2

最后增加游戏结束文字的绘制

        if game_state == 2:
            myfont = pygame.font.Font(None,30)
            white = 255,255,255
            textImage = myfont.render("Game over", True, white)
            screen.blit(textImage, (160,190))

好了,现在会提示游戏结束了
七、pygame做一个简单的俄罗斯方块游戏(基础篇2)
最后附下目前的完整代码

# -*- coding=utf-8 -*-
import random
import pygame
from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN,K_SPACE

class Panel(object): # 用于绘制整个游戏窗口的版面
    rect_arr=[] # 已经落底下的方块
    moving_block=None # 正在落下的方块
    def __init__(self,bg, block_size, position):
        self._bg=bg;
        self._x,self._y,self._width,self._height=position
        self._block_size=block_size
        self._bgcolor=[0,0,0]
    
    def add_block(self,block):
        for rect in block.get_rect_arr():
            self.rect_arr.append(rect)

    def create_move_block(self):
        block = create_block()
        block.move(5-2,-2) # 方块挪到中间 
        self.moving_block=block

    def check_overlap(self, diffx, diffy, check_arr=None):
        if check_arr is None: check_arr = self.moving_block.get_rect_arr()
        for x,y in check_arr:
            for rx,ry in self.rect_arr:
                if x+diffx==rx and y+diffy==ry:
                    return True
        return False

    def control_block(self, diffx, diffy):
        if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
            self.moving_block.move(diffx,diffy)

    def change_block(self):
        if self.moving_block:
            new_arr = self.moving_block.change()
            if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠
                self.moving_block.rect_arr=new_arr

    def move_block(self):
        if self.moving_block is None: create_move_block()
        if self.moving_block.can_move(0,1) and not self.check_overlap(0,1): 
            self.moving_block.move(0,1)
            return 1
        else:
            self.add_block(self.moving_block)
            self.check_clear()

            for x,y in self.rect_arr:
                if y<0: return 9 # 游戏失败
            self.create_move_block()
            return 2

    def check_clear(self):
        tmp_arr = [[] for i in range(20)]
        # 先将方块按行存入数组
        for x,y in self.rect_arr:
            if y<0: return
            tmp_arr[y].append([x,y])

        clear_num=0
        clear_lines=set([])
        y_clear_diff_arr=[[] for i in range(20)]
        # 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量
        for y in range(19,-1,-1):
            if len(tmp_arr[y])==10:
                clear_lines.add(y)
                clear_num += 1
            y_clear_diff_arr[y] = clear_num

        if clear_num>0:
            new_arr=[]
            # 跳过移除行,并将其他行做偏移
            for y in range(19,-1,-1):
                if y in clear_lines: continue
                tmp_row = tmp_arr[y]
                y_clear_diff=y_clear_diff_arr[y]
                for x,y in tmp_row:
                    new_arr.append([x,y+y_clear_diff])
            
            self.rect_arr = new_arr


    def paint(self):
        mid_x=self._x+self._width/2
        pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景
        
        # 绘制已经落底下的方块
        bz=self._block_size
        for rect in self.rect_arr:
            x,y=rect
            pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
            pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
       
        # 绘制正在落下的方块
        if self.move_block:
            for rect in self.moving_block.get_rect_arr():
                x,y=rect
                pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
                pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)


class Block(object):
    sx=0
    sy=0
    def __init__(self):
        self.rect_arr=[]

    def get_rect_arr(self): # 用于获取方块种的四个矩形列表
        return self.rect_arr

    def move(self,xdiff,ydiff): # 用于移动方块的方法
        self.sx+=xdiff
        self.sy+=ydiff
        self.new_rect_arr=[]
        for x,y in self.rect_arr:
            self.new_rect_arr.append((x+xdiff,y+ydiff))
        self.rect_arr=self.new_rect_arr

    def can_move(self,xdiff,ydiff):
        for x,y in self.rect_arr:
            if y+ydiff>=20: return False
            if x+xdiff<0 or x+xdiff>=10: return False
        return True

    def change(self):
        self.shape_id+=1 # 下一形态
        if self.shape_id >= self.shape_num: 
            self.shape_id=0

        arr = self.get_shape()
        new_arr = []
        for x,y in arr:
            if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界
                self.shape_id -= 1
                if self.shape_id < 0: self.shape_id = self.shape_num - 1
                return None 

            new_arr.append([x+self.sx,y+self.sy])

        return new_arr

class LongBlock(Block):
    shape_id=0
    shape_num=2
    def __init__(self, n=None): # 两种形态
        super(LongBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        return [(1,0),(1,1),(1,2),(1,3)] if self.shape_id==0 else [(0,2),(1,2),(2,2),(3,2)]

class SquareBlock(Block): # 一种形态
    shape_id=0
    shape_num=1
    def __init__(self, n=None):
        super(SquareBlock, self).__init__()
        self.rect_arr=self.get_shape()

    def get_shape(self):
        return [(1,1),(1,2),(2,1),(2,2)]

class ZBlock(Block): # 两种形态
    shape_id=0
    shape_num=2
    def __init__(self, n=None):
        super(ZBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        return [(2,0),(2,1),(1,1),(1,2)] if self.shape_id==0 else [(0,1),(1,1),(1,2),(2,2)]

class SBlock(Block): # 两种形态
    shape_id=0
    shape_num=2
    def __init__(self, n=None):
        super(SBlock, self).__init__()
        if n is None: n=random.randint(0,1)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        return [(1,0),(1,1),(2,1),(2,2)] if self.shape_id==0 else [(0,2),(1,2),(1,1),(2,1)]

class LBlock(Block): # 四种形态
    shape_id=0
    shape_num=4
    def __init__(self, n=None):
        super(LBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        if self.shape_id==0: return [(1,0),(1,1),(1,2),(2,2)]
        elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,2)]
        elif self.shape_id==2: return [(0,0),(1,0),(1,1),(1,2)]
        else: return [(0,1),(1,1),(2,1),(2,0)]

class JBlock(Block): # 四种形态
    shape_id=0
    shape_num=4
    def __init__(self, n=None):
        super(JBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        if self.shape_id==0: return [(1,0),(1,1),(1,2),(0,2)]
        elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,0)]
        elif self.shape_id==2: return [(2,0),(1,0),(1,1),(1,2)]
        else: return [(0,1),(1,1),(2,1),(2,2)]

class TBlock(Block): # 四种形态
    shape_id=0
    shape_num=4
    def __init__(self, n=None):
        super(TBlock, self).__init__()
        if n is None: n=random.randint(0,3)
        self.shape_id=n
        self.rect_arr=self.get_shape()

    def get_shape(self):
        if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]
        elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]
        elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]
        else: return [(1,0),(1,1),(1,2),(2,1)]
        
def create_block():
    n = random.randint(0,19)
    if n==0: return SquareBlock(n=0)
    elif n==1 or n==2: return LongBlock(n=n-1)
    elif n==3 or n==4: return ZBlock(n=n-3)
    elif n==5 or n==6: return SBlock(n=n-5)
    elif n>=7 and n<=10: return LBlock(n=n-7)
    elif n>=11 and n<=14: return JBlock(n=n-11)
    else: return TBlock(n=n-15)

def run():
    pygame.init()
    space=30
    main_block_size=30
    main_panel_width=main_block_size*10
    main_panel_height=main_block_size*20
    screencaption = pygame.display.set_caption('Tetris')
    screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽
    main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])

    pygame.key.set_repeat(200, 30)
    main_panel.create_move_block()

    diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒
    ticks = pygame.time.get_ticks() + diff_ticks

    game_state = 1 # 游戏状态1.表示正常 2.表示失败
    while True:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                 pygame.quit()
                 exit()
            if event.type == KEYDOWN:
             if event.key == K_LEFT: main_panel.control_block(-1,0)
             if event.key == K_RIGHT: main_panel.control_block(1,0)
             if event.key == K_UP: main_panel.change_block()
             if event.key == K_DOWN: main_panel.control_block(0,1)
             if event.key == K_SPACE:
                flag = main_panel.move_block()
                while flag==1: 
                    flag = main_panel.move_block()
                if flag == 9: game_state = 2
       
        screen.fill((100,100,100)) # 将界面设置为灰色
        main_panel.paint() # 主面盘绘制

        if game_state == 2:
            myfont = pygame.font.Font(None,30)
            white = 255,255,255
            textImage = myfont.render("Game over", True, white)
            screen.blit(textImage, (160,190))

        pygame.display.update() # 必须调用update才能看到绘图显示

        if game_state == 1 and pygame.time.get_ticks() >= ticks:
            ticks+=diff_ticks
            if main_panel.move_block()==9: game_state = 2 # 游戏结束

run()

今天先写到这,下章继续