七、pygame做一个简单的俄罗斯方块游戏(基础篇2)
接上章继续写俄罗斯方块游戏
五、计算方块之间的碰撞
在Panel类里增加函数
def check_overlap(self, diffx, diffy):
for x,y in self.moving_block.get_rect_arr():
for rx,ry in self.rect_arr:
if x+diffx==rx and y+diffy==ry:
return True
return False
修改move_block函数的判断,增加check_overlap函数检测
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
else:
self.add_block(self.moving_block)
self.create_move_block()
现在的效果是方块可以堆叠了
六、键盘控制左右移动
导入变量
from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN
Panel类里增加一个控制移动方块的函数
def control_block(self, diffx, diffy):
if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
self.moving_block.move(diffx,diffy)
鼠标事件监听处做下键盘的响应
if event.type == KEYDOWN:
if event.key == K_LEFT: main_panel.control_block(-1,0)
if event.key == K_RIGHT: main_panel.control_block(1,0)
if event.key == K_UP: pass # 变形过会实现
if event.key == K_DOWN: main_panel.control_block(0,1)
由于Block类的can_move函数没有实现左右移动的判断,所以需要再对can_move
增加左右边界的处理
def can_move(self,xdiff,ydiff):
for x,y in self.rect_arr:
if y+ydiff>=20: return False
if x+xdiff<0 or x+xdiff>=10: return False
return True
现在,左右的移动也正常了,效果图如下
贴下目前的代码
# -*- coding=utf-8 -*-
import random
import pygame
from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN
class Panel(object): # 用于绘制整个游戏窗口的版面
rect_arr=[] # 已经落底下的方块
moving_block=None # 正在落下的方块
def __init__(self,bg, block_size, position):
self._bg=bg;
self._x,self._y,self._width,self._height=position
self._block_size=block_size
self._bgcolor=[0,0,0]
def add_block(self,block):
for rect in block.get_rect_arr():
self.rect_arr.append(rect)
def create_move_block(self):
block = create_block()
block.move(5-2,-2) # 方块挪到中间
self.moving_block=block
def check_overlap(self, diffx, diffy, check_arr=None):
if check_arr is None: check_arr = self.moving_block.get_rect_arr()
for x,y in check_arr:
for rx,ry in self.rect_arr:
if x+diffx==rx and y+diffy==ry:
return True
return False
def control_block(self, diffx, diffy):
if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
self.moving_block.move(diffx,diffy)
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
else:
self.add_block(self.moving_block)
self.create_move_block()
def paint(self):
mid_x=self._x+self._width/2
pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景
# 绘制已经落底下的方块
bz=self._block_size
for rect in self.rect_arr:
x,y=rect
pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
# 绘制正在落下的方块
if self.move_block:
for rect in self.moving_block.get_rect_arr():
x,y=rect
pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
class Block(object):
def __init__(self):
self.rect_arr=[]
def get_rect_arr(self): # 用于获取方块种的四个矩形列表
return self.rect_arr
def move(self,xdiff,ydiff): # 用于移动方块的方法
self.new_rect_arr=[]
for x,y in self.rect_arr:
self.new_rect_arr.append((x+xdiff,y+ydiff))
self.rect_arr=self.new_rect_arr
def can_move(self,xdiff,ydiff):
for x,y in self.rect_arr:
if y+ydiff>=20: return False
if x+xdiff<0 or x+xdiff>=10: return False
return True
class LongBlock(Block):
def __init__(self, n=None): # 两种形态
super(LongBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.rect_arr=[(1,0),(1,1),(1,2),(1,3)] if n==0 else [(0,2),(1,2),(2,2),(3,2)]
class SquareBlock(Block): # 一种形态
def __init__(self, n=None):
super(SquareBlock, self).__init__()
self.rect_arr=[(1,1),(1,2),(2,1),(2,2)]
class ZBlock(Block): # 两种形态
def __init__(self, n=None):
super(ZBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.rect_arr=[(2,0),(2,1),(1,1),(1,2)] if n==0 else [(0,1),(1,1),(1,2),(2,2)]
class SBlock(Block): # 两种形态
def __init__(self, n=None):
super(SBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.rect_arr=[(1,0),(1,1),(2,1),(2,2)] if n==0 else [(0,2),(1,2),(1,1),(2,1)]
class LBlock(Block): # 四种形态
def __init__(self, n=None):
super(LBlock, self).__init__()
if n is None: n=random.randint(0,3)
if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(2,2)]
elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,2)]
elif n==2: self.rect_arr=[(0,0),(1,0),(1,1),(1,2)]
else: self.rect_arr=[(0,1),(1,1),(2,1),(2,0)]
class JBlock(Block): # 四种形态
def __init__(self, n=None):
super(JBlock, self).__init__()
if n is None: n=random.randint(0,3)
if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(0,2)]
elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,0)]
elif n==2: self.rect_arr=[(2,0),(1,0),(1,1),(1,2)]
else: self.rect_arr=[(0,1),(1,1),(2,1),(2,2)]
class TBlock(Block): # 四种形态
def __init__(self, n=None):
super(TBlock, self).__init__()
if n is None: n=random.randint(0,3)
if n==0: self.rect_arr=[(0,1),(1,1),(2,1),(1,2)]
elif n==1: self.rect_arr=[(1,0),(1,1),(1,2),(0,1)]
elif n==2: self.rect_arr=[(0,1),(1,1),(2,1),(1,0)]
else: self.rect_arr=[(1,0),(1,1),(1,2),(2,1)]
def create_block():
n = random.randint(0,19)
if n==0: return SquareBlock(n=0)
elif n==1 or n==2: return LongBlock(n=n-1)
elif n==3 or n==4: return ZBlock(n=n-3)
elif n==5 or n==6: return SBlock(n=n-5)
elif n>=7 and n<=10: return LBlock(n=n-7)
elif n>=11 and n<=14: return JBlock(n=n-11)
else: return TBlock(n=n-15)
def run():
pygame.init()
space=30
main_block_size=30
main_panel_width=main_block_size*10
main_panel_height=main_block_size*20
screencaption = pygame.display.set_caption('Tetris')
screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽
main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])
pygame.key.set_repeat(200, 30)
main_panel.create_move_block()
diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒
ticks = pygame.time.get_ticks() + diff_ticks
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
exit()
if event.type == KEYDOWN:
if event.key == K_LEFT: main_panel.control_block(-1,0)
if event.key == K_RIGHT: main_panel.control_block(1,0)
if event.key == K_UP: pass # 变形过会实现
if event.key == K_DOWN: main_panel.control_block(0,1)
screen.fill((100,100,100)) # 将界面设置为灰色
main_panel.paint() # 主面盘绘制
pygame.display.update() # 必须调用update才能看到绘图显示
if pygame.time.get_ticks() >= ticks:
ticks+=diff_ticks
main_panel.move_block()
run()
七、控制变形
变形的实现,我们对每个方块子类的初始化函数稍作修改,将获取形状做一个独立的get_shape函数,并且给每个子类增加一个变量用于记录当前形态id,用一个变量用于标识每种方块的形态数量,以T型为例,修改后代码如下
class TBlock(Block): # 四种形态
shape_id=0
shape_num=4
def __init__(self, n=None):
super(TBlock, self).__init__()
if n is None: n=random.randint(0,3)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]
elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]
elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]
else: return [(1,0),(1,1),(1,2),(2,1)]
这样我们在Block父类里可以加一个change函数,用于变换至下一形态,由于变化时要保持原来的移动位置,我们增加sx,sy两个变量将方块移动过的位置存着,便于在变化时使用
class Block(object):
sx=0
sy=0
def __init__(self):
self.rect_arr=[]
def get_rect_arr(self): # 用于获取方块种的四个矩形列表
return self.rect_arr
def move(self,xdiff,ydiff): # 用于移动方块的方法
self.sx+=xdiff
self.sy+=ydiff
self.new_rect_arr=[]
for x,y in self.rect_arr:
self.new_rect_arr.append((x+xdiff,y+ydiff))
self.rect_arr=self.new_rect_arr
def can_move(self,xdiff,ydiff):
for x,y in self.rect_arr:
if y+ydiff>=20: return False
if x+xdiff<0 or x+xdiff>=10: return False
return True
def change(self):
self.shape_id+=1 # 下一形态
if self.shape_id >= self.shape_num:
self.shape_id=0
arr = self.get_shape()
new_arr = []
for x,y in arr:
if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界
self.shape_id -= 1
if self.shape_id < 0: self.shape_id = self.shape_num - 1
return None
new_arr.append([x+self.sx,y+self.sy])
return new_arr
在Panel类里的再增加一个change函数,直接调用moving_block的change
def change_block(self):
if self.moving_block:
new_arr = self.moving_block.change()
if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠
self.moving_block.rect_arr=new_arr
最后将key_up事件的响应加入change_block的调用就好了
if event.key == K_UP: main_panel.change_block()
现在已经实现了,变形和移动了,方块基本可以正常下落了
八、方块的消除
这个计算主要是处理Panel类的rect_arr,如果数组中出现某一行有10个就符合消除条件,为简化计算,我们将这些矩形按y值存到一个数组中,便于计算
def check_clear(self):
tmp_arr = [[] for i in range(20)]
# 先将方块按行存入数组
for x,y in self.rect_arr:
if y<0: return
tmp_arr[y].append([x,y])
clear_num=0
clear_lines=set([])
y_clear_diff_arr=[[] for i in range(20)]
# 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量
for y in range(19,-1,-1):
if len(tmp_arr[y])==10:
clear_lines.add(y)
clear_num += 1
y_clear_diff_arr[y] = clear_num
if clear_num>0:
new_arr=[]
# 跳过移除行,并将其他行做偏移
for y in range(19,-1,-1):
if y in clear_lines: continue
tmp_row = tmp_arr[y]
y_clear_diff=y_clear_diff_arr[y]
for x,y in tmp_row:
new_arr.append([x,y+y_clear_diff])
self.rect_arr = new_arr
在Panel的move_block处增加check_clear的调用
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
else:
self.add_block(self.moving_block)
self.check_clear()
self.create_move_block()
现在游戏可以消除方块了
九、增加空格键使快速落下
快速落下可以快速调用Panel的move_block函数,我们在move_block函数增加一个返回值,用于标记使正常下移还是移到底部后新的方块
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
return 1
else:
self.add_block(self.moving_block)
self.check_clear()
self.create_move_block()
return 2
在键盘响应处增加键盘处理
if event.key == K_SPACE:
while main_panel.move_block()==1:
pass
十、增加游戏结束判断
游戏结束同样可以在Panel类的move_block中处理,如果一个方块到底,并且消除进行后,发现有方块的y值小于0,那么一定是失败了
修改Panel类的move_block函数
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
return 1
else:
self.add_block(self.moving_block)
self.check_clear()
for x,y in self.rect_arr:
if y<0: return 9 # 游戏失败
self.create_move_block()
return 2
增加一个变量记录游戏状态
game_state = 1 # 游戏状态1.表示正常 2.表示失败
计时器处修改程序
if game_state == 1 and pygame.time.get_ticks() >= ticks:
ticks+=diff_ticks
if main_panel.move_block()==9: game_state = 2
鼠标键盘响应空格键中也增加一下判断
if event.key == K_SPACE:
flag = main_panel.move_block()
while flag==1:
flag = main_panel.move_block()
if flag == 9: game_state = 2
最后增加游戏结束文字的绘制
if game_state == 2:
myfont = pygame.font.Font(None,30)
white = 255,255,255
textImage = myfont.render("Game over", True, white)
screen.blit(textImage, (160,190))
好了,现在会提示游戏结束了
最后附下目前的完整代码
# -*- coding=utf-8 -*-
import random
import pygame
from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN,K_SPACE
class Panel(object): # 用于绘制整个游戏窗口的版面
rect_arr=[] # 已经落底下的方块
moving_block=None # 正在落下的方块
def __init__(self,bg, block_size, position):
self._bg=bg;
self._x,self._y,self._width,self._height=position
self._block_size=block_size
self._bgcolor=[0,0,0]
def add_block(self,block):
for rect in block.get_rect_arr():
self.rect_arr.append(rect)
def create_move_block(self):
block = create_block()
block.move(5-2,-2) # 方块挪到中间
self.moving_block=block
def check_overlap(self, diffx, diffy, check_arr=None):
if check_arr is None: check_arr = self.moving_block.get_rect_arr()
for x,y in check_arr:
for rx,ry in self.rect_arr:
if x+diffx==rx and y+diffy==ry:
return True
return False
def control_block(self, diffx, diffy):
if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):
self.moving_block.move(diffx,diffy)
def change_block(self):
if self.moving_block:
new_arr = self.moving_block.change()
if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠
self.moving_block.rect_arr=new_arr
def move_block(self):
if self.moving_block is None: create_move_block()
if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):
self.moving_block.move(0,1)
return 1
else:
self.add_block(self.moving_block)
self.check_clear()
for x,y in self.rect_arr:
if y<0: return 9 # 游戏失败
self.create_move_block()
return 2
def check_clear(self):
tmp_arr = [[] for i in range(20)]
# 先将方块按行存入数组
for x,y in self.rect_arr:
if y<0: return
tmp_arr[y].append([x,y])
clear_num=0
clear_lines=set([])
y_clear_diff_arr=[[] for i in range(20)]
# 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量
for y in range(19,-1,-1):
if len(tmp_arr[y])==10:
clear_lines.add(y)
clear_num += 1
y_clear_diff_arr[y] = clear_num
if clear_num>0:
new_arr=[]
# 跳过移除行,并将其他行做偏移
for y in range(19,-1,-1):
if y in clear_lines: continue
tmp_row = tmp_arr[y]
y_clear_diff=y_clear_diff_arr[y]
for x,y in tmp_row:
new_arr.append([x,y+y_clear_diff])
self.rect_arr = new_arr
def paint(self):
mid_x=self._x+self._width/2
pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景
# 绘制已经落底下的方块
bz=self._block_size
for rect in self.rect_arr:
x,y=rect
pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
# 绘制正在落下的方块
if self.move_block:
for rect in self.moving_block.get_rect_arr():
x,y=rect
pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)
pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)
class Block(object):
sx=0
sy=0
def __init__(self):
self.rect_arr=[]
def get_rect_arr(self): # 用于获取方块种的四个矩形列表
return self.rect_arr
def move(self,xdiff,ydiff): # 用于移动方块的方法
self.sx+=xdiff
self.sy+=ydiff
self.new_rect_arr=[]
for x,y in self.rect_arr:
self.new_rect_arr.append((x+xdiff,y+ydiff))
self.rect_arr=self.new_rect_arr
def can_move(self,xdiff,ydiff):
for x,y in self.rect_arr:
if y+ydiff>=20: return False
if x+xdiff<0 or x+xdiff>=10: return False
return True
def change(self):
self.shape_id+=1 # 下一形态
if self.shape_id >= self.shape_num:
self.shape_id=0
arr = self.get_shape()
new_arr = []
for x,y in arr:
if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界
self.shape_id -= 1
if self.shape_id < 0: self.shape_id = self.shape_num - 1
return None
new_arr.append([x+self.sx,y+self.sy])
return new_arr
class LongBlock(Block):
shape_id=0
shape_num=2
def __init__(self, n=None): # 两种形态
super(LongBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
return [(1,0),(1,1),(1,2),(1,3)] if self.shape_id==0 else [(0,2),(1,2),(2,2),(3,2)]
class SquareBlock(Block): # 一种形态
shape_id=0
shape_num=1
def __init__(self, n=None):
super(SquareBlock, self).__init__()
self.rect_arr=self.get_shape()
def get_shape(self):
return [(1,1),(1,2),(2,1),(2,2)]
class ZBlock(Block): # 两种形态
shape_id=0
shape_num=2
def __init__(self, n=None):
super(ZBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
return [(2,0),(2,1),(1,1),(1,2)] if self.shape_id==0 else [(0,1),(1,1),(1,2),(2,2)]
class SBlock(Block): # 两种形态
shape_id=0
shape_num=2
def __init__(self, n=None):
super(SBlock, self).__init__()
if n is None: n=random.randint(0,1)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
return [(1,0),(1,1),(2,1),(2,2)] if self.shape_id==0 else [(0,2),(1,2),(1,1),(2,1)]
class LBlock(Block): # 四种形态
shape_id=0
shape_num=4
def __init__(self, n=None):
super(LBlock, self).__init__()
if n is None: n=random.randint(0,3)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
if self.shape_id==0: return [(1,0),(1,1),(1,2),(2,2)]
elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,2)]
elif self.shape_id==2: return [(0,0),(1,0),(1,1),(1,2)]
else: return [(0,1),(1,1),(2,1),(2,0)]
class JBlock(Block): # 四种形态
shape_id=0
shape_num=4
def __init__(self, n=None):
super(JBlock, self).__init__()
if n is None: n=random.randint(0,3)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
if self.shape_id==0: return [(1,0),(1,1),(1,2),(0,2)]
elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,0)]
elif self.shape_id==2: return [(2,0),(1,0),(1,1),(1,2)]
else: return [(0,1),(1,1),(2,1),(2,2)]
class TBlock(Block): # 四种形态
shape_id=0
shape_num=4
def __init__(self, n=None):
super(TBlock, self).__init__()
if n is None: n=random.randint(0,3)
self.shape_id=n
self.rect_arr=self.get_shape()
def get_shape(self):
if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]
elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]
elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]
else: return [(1,0),(1,1),(1,2),(2,1)]
def create_block():
n = random.randint(0,19)
if n==0: return SquareBlock(n=0)
elif n==1 or n==2: return LongBlock(n=n-1)
elif n==3 or n==4: return ZBlock(n=n-3)
elif n==5 or n==6: return SBlock(n=n-5)
elif n>=7 and n<=10: return LBlock(n=n-7)
elif n>=11 and n<=14: return JBlock(n=n-11)
else: return TBlock(n=n-15)
def run():
pygame.init()
space=30
main_block_size=30
main_panel_width=main_block_size*10
main_panel_height=main_block_size*20
screencaption = pygame.display.set_caption('Tetris')
screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽
main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])
pygame.key.set_repeat(200, 30)
main_panel.create_move_block()
diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒
ticks = pygame.time.get_ticks() + diff_ticks
game_state = 1 # 游戏状态1.表示正常 2.表示失败
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
exit()
if event.type == KEYDOWN:
if event.key == K_LEFT: main_panel.control_block(-1,0)
if event.key == K_RIGHT: main_panel.control_block(1,0)
if event.key == K_UP: main_panel.change_block()
if event.key == K_DOWN: main_panel.control_block(0,1)
if event.key == K_SPACE:
flag = main_panel.move_block()
while flag==1:
flag = main_panel.move_block()
if flag == 9: game_state = 2
screen.fill((100,100,100)) # 将界面设置为灰色
main_panel.paint() # 主面盘绘制
if game_state == 2:
myfont = pygame.font.Font(None,30)
white = 255,255,255
textImage = myfont.render("Game over", True, white)
screen.blit(textImage, (160,190))
pygame.display.update() # 必须调用update才能看到绘图显示
if game_state == 1 and pygame.time.get_ticks() >= ticks:
ticks+=diff_ticks
if main_panel.move_block()==9: game_state = 2 # 游戏结束
run()
今天先写到这,下章继续