欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

基于Java实现的快速排序

程序员文章站 2022-06-28 21:02:49
简述 快速排序是一种排序执行效率很高的排序算法,它利用分治法来对待排序序列进行分治排序,它的思想主要是通过一趟排序将待排记录分隔成独立的两部分,其中的一部分比关键字小,后面一部分比关键字大,然后再对这前后的两部分分别采用这种方式进行排序,通过递归的运算最终达到整个序列有序,下面我们简单进行阐述。 快 ......

简述

快速排序是一种排序执行效率很高的排序算法,它利用分治法来对待排序序列进行分治排序,它的思想主要是通过一趟排序将待排记录分隔成独立的两部分,其中的一部分比关键字小,后面一部分比关键字大,然后再对这前后的两部分分别采用这种方式进行排序,通过递归的运算最终达到整个序列有序,下面我们简单进行阐述。

快排思路

我们从一个数组来逐步逐步说明快速排序的方法和思路。

  1. 假设我们对数组{7, 1, 3, 5, 13, 9, 3, 6, 11}进行快速排序。
  2. 首先在这个序列中找一个数作为基准数,为了方便可以取第一个数。
  3. 遍历数组,将小于基准数的放置于基准数左边,大于基准数的放置于基准数右边
  4. 此时得到类似于这种排序的数组{3, 1, 3, 5, 6, 7, 9, 13, 11}。
  5. 在初始状态下7是第一个位置,现在需要把7挪到中间的某个位置k,也即k位置是两边数的分界点。
  6. 那如何做到把小于和大于基准数7的值分别放置于两边呢,我们采用双指针法从数组的两端分别进行比对
  7. 先从最右位置往左开始找直到找到一个小于基准数的值,记录下该值的位置(记作 i)。
  8. 再从最左位置往右找直到找到一个大于基准数的值,记录下该值的位置(记作 j)。
  9. 如果位置i<j,则交换i和j两个位置上的值,然后继续从(j-1)的位置往前(i+1)的位置往后重复上面比对基准数然后交换的步骤。
  10. 如果执行到i==j,表示本次比对已经结束,将最后i的位置的值与基准数做交换,此时基准数就找到了临界点的位置k,位置k两边的数组都比当前位置k上的基准值或都更小或都更大。
  11. 上一次的基准值7已经把数组分为了两半,基准值7算是已归位(找到排序后的位置)
  12. 通过相同的排序思想,分别对7两边的数组进行快速排序,左边对[left, k-1]子数组排序,右边则是[k+1, right]子数组排序
  13. 利用递归算法,对分治后的子数组进行排序。

快速排序之所以比较快,是因为相比冒泡排序,每次的交换都是跳跃式的,每次设置一个基准值,将小于基准值的都交换到左边,大于基准值的都交换到右边,这样不会像冒泡一样每次都只交换相邻的两个数,因此比较和交换的此数都变少了,速度自然更高。当然,也有可能出现最坏的情况,就是仍可能相邻的两个数进行交换。

快速排序基于分治思想,它的时间平均复杂度很容易计算得到为o(nlogn)。

代码实现

 1 /**
 2  * 快速排序
 3  * @param array
 4  */
 5 public static void quicksort(int[] array) {
 6     int len;
 7     if(array == null
 8             || (len = array.length) == 0
 9             || len == 1) {
10         return ;
11     }
12     sort(array, 0, len - 1);
13 }
14 
15 /**
16  * 快排核心算法,递归实现
17  * @param array
18  * @param left
19  * @param right
20  */
21 public static void sort(int[] array, int left, int right) {
22     if(left > right) {
23         return;
24     }
25     // base中存放基准数
26     int base = array[left];
27     int i = left, j = right;
28     while(i != j) {
29         // 顺序很重要,先从右边开始往左找,直到找到比base值小的数
30         while(array[j] >= base && i < j) {
31             j--;
32         }
33 
34         // 再从左往右边找,直到找到比base值大的数
35         while(array[i] <= base && i < j) {
36             i++;
37         }
38 
39         // 上面的循环结束表示找到了位置或者(i>=j)了,交换两个数在数组中的位置
40         if(i < j) {
41             int tmp = array[i];
42             array[i] = array[j];
43             array[j] = tmp;
44         }
45     }
46 
47     // 将基准数放到中间的位置(基准数归位)
48     array[left] = array[i];
49     array[i] = base;
50 
51     // 递归,继续向基准的左右两边执行和上面同样的操作
52     // i的索引处为上面已确定好的基准值的位置,无需再处理
53     sort(array, left, i - 1);
54     sort(array, i + 1, right);
55 }

参考资料

1、《啊哈!算法》/ 啊哈磊著. 人民邮电出版社