欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch中自定义神经网络卷积核权重

程序员文章站 2022-06-27 20:52:40
1. 自定义神经网络卷积核权重 神经网络被深度学习者深深喜爱,究其原因之一是神经网络的便利性,使用者只需要根据自己的需求像搭积木一样搭建神经网络框架即可,搭建过程中我们只需要考虑卷积核的尺寸,输入输出通道数,卷积方式等等。 我们使用惯了自带的参数后,当我们要自定义卷积核参数时,突然有种无从下手的感觉 ......

1. 自定义神经网络卷积核权重

       神经网络被深度学习者深深喜爱,究其原因之一是神经网络的便利性,使用者只需要根据自己的需求像搭积木一样搭建神经网络框架即可,搭建过程中我们只需要考虑卷积核的尺寸,输入输出通道数,卷积方式等等。

       我们使用惯了自带的参数后,当我们要自定义卷积核参数时,突然有种无从下手的感觉,哈哈哈哈哈哈哈哈~~,请允许我开心下,嘿嘿!因为笔者在初入神经网络时也遇到了同样的问题,当时踩了太多坑了,宝宝想哭(灬ꈍ ꈍ灬)!让我悲伤的是,找遍了各个资源区,也没有找到大家的分享。因此,我想把我的方法写出来,希望能帮助到各位宝宝,开心(*^▽^*)。

  话不多说,正文开始......

2. 定义卷积核权重

  我这里是自定义的dtt系数卷积核权重,直接上权重代码:

2.1 dtt系数权重code

  def dtt_matrix(n): 这个函数是n*n的dtt系数矩阵,笔者的是8*8的系数矩阵。

       def dtt_kernel(out_channels, in_channels, kernel_size): 这个方法是设定权重,权重需要包括4个参数(输出通道数,输入通道数,卷积核高,卷积核宽),这里有很多细节要注意,宝宝们要亲自躺下坑,才能映像深刻也,我就不深究了哈,(#^.^#)。

import numpy as np
import torch
import torch.nn as nn


# ================================
# dtt coefficient matrix of n * n
# ================================
def dtt_matrix(n):
    dtt_coe = np.zeros([n, n], dtype='float32')
    for i in range(0, n):
        dtt_coe[0, i] = 1/np.sqrt(n)
        dtt_coe[1, i] = (2*i + 1 - n)*np.sqrt(3/(n*(np.power(n, 2) - 1)))
    for i in range(1, n-1):
        dtt_coe[i+1, 0] = -np.sqrt((n-i-1)/(n+i+1)) * np.sqrt((2*(i+1)+1)/(2*(i+1)-1)) * dtt_coe[i, 0]
        dtt_coe[i+1, 1] = (1 + (i+1)*(i+2)/(1-n)) * dtt_coe[i+1, 0]
        dtt_coe[i+1, n-1] = np.power(-1, i+1) * dtt_coe[i+1, 0]
        dtt_coe[i+1, n-2] = np.power(-1, i+1) * dtt_coe[i+1, 1]
        for j in range(2, int(n/2)):
            t1 = (-(i+1) * (i+2) - (2*j-1) * (j-n-1) - j)/(j*(n-j))
            t2 = ((j-1) * (j-n-1))/(j * (n-j))
            dtt_coe[i+1, j] = t1 * dtt_coe[i+1, j-1] + t2 * dtt_coe[i+1, j-2]
            dtt_coe[i+1, n-j-1] = np.power(-1, i-1) * dtt_coe[i+1, j]
    return dtt_coe


# ===============================================================
# dtt coefficient matrix of (out_channels * in_channels * n * n)
# ===============================================================
def dtt_kernel(out_channels, in_channels, kernel_size):
    dtt_coe = dtt_matrix(kernel_size)
    dtt_coe = np.array(dtt_coe)

    dtt_weight = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32')
    temp = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32')

    order = 0
    for i in range(0, kernel_size):
        for j in range(0, kernel_size):
            dtt_row = dtt_coe[i, :]
            dtt_col = dtt_coe[:, j]
            dtt_row = dtt_row.reshape(len(dtt_row), 1)
            dtt_col = dtt_col.reshape(1, len(dtt_col))
            # print("dtt_row: ", dtt_row)
            # print("dtt_col: ", dtt_col)
            # print("i:", i, "j: ", j)
            temp[order, 0, :, :] = np.dot(dtt_row, dtt_col)
            order = order + 1
    for i in range(0, in_channels):
        for j in range(0, out_channels):
            # dtt_weight[j, i, :, :] = flip_180(temp[j, 0, :, :])
            dtt_weight[j, i, :, :] = temp[j, 0, :, :]
    return torch.tensor(dtt_weight)

 

2.2 'same'方式卷积

  如果宝宝需要保持卷积前后的数据尺寸保持不变,即'same'方式卷积,那么你直接使用我这个卷积核(提一下哟,这个我也是借自某位前辈的,我当时没备注哇,先在这里感谢那位前辈,前辈如果路过,还请留言小生哈,(#^.^#))。

import torch.utils.data
from torch.nn import functional as f
import math
import torch
from torch.nn.parameter import parameter
from torch.nn.functional import pad
from torch.nn.modules import module
from torch.nn.modules.utils import _single, _pair, _triple

class _convnd(module):
    def __init__(self, in_channels, out_channels, kernel_size, stride,
                 padding, dilation, transposed, output_padding, groups, bias):
        super(_convnd, self).__init__()
        if in_channels % groups != 0:
            raise valueerror('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise valueerror('out_channels must be divisible by groups')
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.transposed = transposed
        self.output_padding = output_padding
        self.groups = groups
        if transposed:
            self.weight = parameter(torch.tensor(
                in_channels, out_channels // groups, *kernel_size))
        else:
            self.weight = parameter(torch.tensor(
                out_channels, in_channels // groups, *kernel_size))
        if bias:
            self.bias = parameter(torch.tensor(out_channels))
        else:
            self.register_parameter('bias', none)
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not none:
            self.bias.data.uniform_(-stdv, stdv)

    def __repr__(self):
        s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
             ', stride={stride}')
        if self.padding != (0,) * len(self.padding):
            s += ', padding={padding}'
        if self.dilation != (1,) * len(self.dilation):
            s += ', dilation={dilation}'
        if self.output_padding != (0,) * len(self.output_padding):
            s += ', output_padding={output_padding}'
        if self.groups != 1:
            s += ', groups={groups}'
        if self.bias is none:
            s += ', bias=false'
        s += ')'
        return s.format(name=self.__class__.__name__, **self.__dict__)

class conv2d(_convnd):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=true):
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        super(conv2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            false, _pair(0), groups, bias)
    def forward(self, input):
        return conv2d_same_padding(input, self.weight, self.bias, self.stride,
                        self.padding, self.dilation, self.groups)

# custom con2d, because pytorch don't have "padding='same'" option.

def conv2d_same_padding(input, weight, bias=none, stride=1, padding=1, dilation=1, groups=1):
    input_rows = input.size(2)
    filter_rows = weight.size(2)
    effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
    out_rows = (input_rows + stride[0] - 1) // stride[0]

    input_cols = input.size(3)
    filter_cols = weight.size(3)
    effective_filter_size_cols = (filter_cols - 1) * dilation[1] + 1
    out_cols = (input_cols + stride[1] - 1) // stride[1]

    padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -input_rows)
    padding_rows = max(0, (out_rows - 1) * stride[0] +
                        (filter_rows - 1) * dilation[0] + 1 - input_rows)
    rows_odd = (padding_rows % 2 != 0)
    padding_cols = max(0, (out_cols - 1) * stride[1] +
                       (filter_cols - 1) * dilation[1] + 1 - input_cols)
    cols_odd = (padding_cols % 2 != 0)
    if rows_odd or cols_odd:
        input = pad(input, [0, int(cols_odd), 0, int(rows_odd)])
    return f.conv2d(input, weight, bias, stride,
                  padding=(padding_rows // 2, padding_cols // 2),
                  dilation=dilation, groups=groups)

 

 2.3 将权重赋给卷积核

  此处才是宝宝们最关心的吧,不慌,这就来了哈,开心(*^▽^*),进入正文了(#^.^#)。

  这里给了一个简单的网络模型(一个固定卷积+3个全连接,全连接是1*1的conv2d),代码里我给了注释,宝宝们应该能秒懂滴,(*^▽^*)!

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as f
import numpy as np
import dtt_kernel
import util
import paddingsame

# 定义权重
dtt_weight1 = dtt_kernel.dtt_kernel(64, 2, 8)


class dttnet(nn.module):
    def __init__(self):
        super(dttnet, self).__init__()
self.conv1 = paddingsame.conv2d(2, 64, 8)
     # 将权重赋给卷积核 self.conv1.weight = nn.parameter(dtt_weight1, requires_grad=false) self.fc1 = util.fc(64, 512, 1) self.fc2 = util.fc(512, 128, 1) self.fc3 = util.fc(128, 2, 1, last=true) def forward(self, x): x = self.conv1(x) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x

 

 2.4 补充我的util类

import torch.nn as nn


def conv(in_channels, out_channels, kernel_size, stride=1, dilation=1, batch_norm=true):
    if batch_norm:
        return nn.sequential(
            nn.conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
            nn.batchnorm2d(out_channels),
            nn.relu()
        )
    else:
        return nn.sequential(
            nn.conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
            nn.relu()
        )


def fc(in_channels, out_channels, kernel_size, stride=1, bias=true, last=false):
    if last:
        return nn.sequential(
            nn.conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
        )
    else:
        return nn.sequential(
            nn.conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)),
            nn.batchnorm2d(out_channels),
            nn.relu()
        )

 

 

3. 总结

  哇哦,写完了耶,不晓得宝宝们有没得收获呢,o((⊙﹏⊙))o,o((⊙﹏⊙))o。大家不懂的可以再下面留言哟,我会时常关注我家的园子呢。若有不足之处,宝宝们也在留言区吱我一下哟,我们下次再见,┏(^0^)┛┏(^0^)┛。