欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

R语言-t分布正态分布分位数图的实例

程序员文章站 2022-06-27 10:50:06
r是用于统计分析、绘图的语言和操作环境。r是属于gnu系统的一个*、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。它是一套由数据操作、计算和图形展示功能整合而成的套件。包括:有效...

r是用于统计分析、绘图的语言和操作环境。

r是属于gnu系统的一个*、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

它是一套由数据操作、计算和图形展示功能整合而成的套件。

包括:有效的数据存储和处理功能,一套完整的数组(特别是矩阵)计算操作符,拥有完整体系的数据分析工具,为数据分析和显示提供的强大图形功能,一套(源自s语言)完善、简单、有效的编程语言(包括条件、循环、自定义函数、输入输出功能)。

如何用rstudio做分位数图呢?

#分位数图,画t分布密度带p值x=seq(-6,6,length=1000);y=dt(x,19)r1=-6;r2=-2.89;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)plot(x,y,type="l",ylab="density oft(19)",xlim=c(-5,5))abline(h=0);polygon(x2,y2,col="red")title("tail probability for t(19)")text(c(-4.1,-2,5),c(0.02,-0.07),c("p-value=0.0047","t=-2.89"))#对称#x=seq(-6,6,length=1000);y=dt(x,19)r1=6;r2=2.89;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)plot(x,y,type="l",ylab="density oft(19)",xlim=c(-5,5))abline(h=0);polygon(x2,y2,col="red")title("tail probability for t(19)")text(c(-4.1,-2,5),c(0.02,-0.07),c("p-value=0.0047","t=-2.89")) #两边#x=seq(-6,6,length=1000);y=dt(x,19)r1=-6;r2=-2.89;r3=2.89;r4=6;x2=c(r1,r1,x[x<r2&x>r1],r2,r2)y2=c(0,dt(c(r1,x[x<r2&x>r1],r2),19),0)x3=c(r3,r3,x[x<r4&x>r3],r4,r4)y3=c(0,dt(c(r3,x[x<r4&x>r3],r4),19),0)plot(x,y,type="l",ylab="density oft(19)",xlim=c(-5,5))abline(h=0);polygon(c(x2,x3),c(y2,y3),col="red");title("tail probability for t(19)")text(c(-4.1,-2.5),c(0.02,-0.007),c("p-value=0.0047","t=-2.89"))text(c(2.5,4.1),c(0.02,-0.007),c("p-value=0.9953","t=2.89"))#正态分布x=seq(-5,5,0.01)                                        #得到步长0.01的x范围plot(x,dnorm(x),type="l",xlim=c(-5,5),ylim=c(0,2),main="the normal density distribution")                 #画curve(dnorm(x,1,0.5),add=t,lty=2,col="blue")lines(x,dnorm(x,0,0.25),col="green")lines(x,dnorm(x,-2,0.5),col="orange")legend("topright",legend=paste("m=",c(0,1,0,-2),"sd=",  #m:均值 sd:方差c(1,0.5,0.25,0.5)),lwd=3,lty=c(1,2,1,1),col=c("black","blue","green","red"))#分布函数set.seed(1)x<-seq(-5,5,length.out=100)y<-pnorm(x,0,1)plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,1),type="l", xaxs="i",yaxs="i",ylab='density',xlab='', main="the normal cumulative distribution")lines(x,pnorm(x,0,0.5),col="green")lines(x,pnorm(x,0,2),col="blue")lines(x,pnorm(x,-2,1),col="orange")legend("bottomright",legend=paste("m=",c(0,0,0,-2),"sd=",c(1,0.5,2,1)),lwd=1,col=c("red","green","blue","orange"))

得到的图形结果如下:


R语言-t分布正态分布分位数图的实例

补充:r语言绘制不同*度下的卡方分布、t分布和f分布

看代码吧~

# === chi-squared distribution ===chif <- function(x, df) {  dchisq(x, df = df)}## === chi-squared distribution with df=1,2, 4, 6 and 10 ===curve(chif(x, df = 1), 0, 20, ylab = "p(x)", lwd = 2)curve(chif(x, df = 2), 0, 20, col = 2, add = t, lty = 2, lwd = 2)curve(chif(x, df = 4), 0, 20, col = 3, add = t, lty = 3, lwd = 2)curve(chif(x, df = 6), 0, 20, col = 4, add = t, lty = 4, lwd = 2)curve(chif(x, df = 10), 0, 20, col = 5, add = t, lty = 5, lwd = 2)legend("topright", legend = c("df=1", "df=2", "df=4", "df=6", "df=10"), col = 1:5, lty = 1:5, lwd = 2)## === chi-squared distribution with df=4,6 and 10 ===curve(dchisq(x, 4), 0, 20, col = 3, lty = 3, lwd = 2, ylab = "p(x)")curve(dchisq(x, 6), 0, 20, col = 4, add = t, lty = 4, lwd = 2)curve(dchisq(x, 10), 0, 20, col = 5, add = t, lty = 5, lwd = 2)legend("topright", legend = c("df=4", "df=6", "df=10"), col = 3:5, lty = 3:5, lwd = 2)### quantilescurve(dchisq(x, 10), 0, 30, col = 1, lty = 1, lwd = 2, ylab = "p(x) of chisq(10)")lines(c(qchisq(0.95, 10), qchisq(0.95, 10)), c(-0.05, dchisq(qchisq(0.95, 10), 10)), col = 2, lwd = 3,       lty = 2)qchisq(0.95,10)## ==== t ===curve(dt(x, 1), -6, 6, ylab = "p(x)", lwd = 2, ylim = c(0, 0.4))curve(dt(x, 2), -6, 6, col = 2, add = t, lwd = 2)curve(dt(x, 5), -6, 6, col = 3, add = t, lwd = 2)curve(dt(x, 10), -6, 6, col = 4, add = t, lwd = 2)curve(dnorm(x), col = 6, add = t, lwd = 2, lty = 2)legend("topright", legend = c("df=1", "df=2", "df=5", "df=10", "df=inf"), col = c(1:4, 6), lty = c(rep(1, 4), 2), lwd = 2)curve(dt(x, 4), -6, 6, col = 4, lwd = 2, ylim = c(0, 0.4), ylab = "p(x)")curve(dnorm(x), col = 6, add = t, lwd = 2, lty = 2)legend("topright", legend = c("t(4)", "n(0,1)"), col = c(4, 6), lty = c(1, 2), lwd = 2)qt(0.025,10)qt(0.975,10)## === f ==curve(df(x, 4, 1), 0, 4, ylab = "p(x)", lwd = 2, ylim = c(0, 0.8))curve(df(x, 4, 4), 0, 4, col = 2, add = t, lwd = 2)curve(df(x, 4, 10), 0, 4, col = 3, add = t, lwd = 2)curve(df(x, 4, 4000), 0, 4, col = 4, add = t, lwd = 2)legend("topright", legend = c("f(4,1)", "f(4,4)", "f(4,10)", "f(4,4000)"), col = 1:4, lwd = 2)qf(0.95,10,5)qf(0.05,5,10)1/qf(0.05,5,10)

卡方分布

R语言-t分布正态分布分位数图的实例
R语言-t分布正态分布分位数图的实例
R语言-t分布正态分布分位数图的实例

t分布

R语言-t分布正态分布分位数图的实例
R语言-t分布正态分布分位数图的实例

f分布

R语言-t分布正态分布分位数图的实例

#卡方分布> qchisq(0.95,5)[1] 11.0705> qchisq(0.95,10)[1] 18.30704> qchisq(0.95,15)[1] 24.99579> qchisq(0.95,20)[1] 31.41043> qchisq(0.95,25)[1] 37.65248> qchisq(0.95,30)[1] 43.77297
#t分布> qt(0.95,5)[1] 2.015048> qt(0.95,10)[1] 1.812461> qt(0.95,15)[1] 1.75305> qt(0.95,20)[1] 1.724718> qt(0.95,25)[1] 1.708141> qt(0.95,30)[1] 1.697261
> qf(0.95,10,5)[1] 4.735063> qf(0.95,5,10)[1] 3.325835> qf(0.95,5,5)[1] 5.050329> qf(0.95,10,10)[1] 2.978237

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。