利用Numpy进行鸢尾花数据集分析
程序员文章站
2022-06-26 15:18:59
利用Numpy进行鸢尾花数据集分析Numpy进行鸢尾花数据集分析使用鸢尾花数据集“iris_data”1. 导入鸢尾花数据集,保持文本不变2求出鸢尾属植物萼片的平均值,中位数和标准差(第一列,sepallenth)3.创建一种标准化形式的鸢尾属植物萼片长度,其值正好介于0和1之间,这样最小值为0,最大值为1(第1列,sepallength)。4. 找到鸢尾属植物萼片长度的第5和第95百分位数(第1列,sepallength)。5. 把iris_data数据集中的20个随机位置修改为np.nan值。6. 在i...
利用Numpy进行鸢尾花数据集分析
- Numpy进行鸢尾花数据集分析
- 使用鸢尾花数据集“iris_data”
- 1. 导入鸢尾花数据集,保持文本不变
- 2求出鸢尾属植物萼片的平均值,中位数和标准差(第一列,sepallenth)
- 3.创建一种标准化形式的鸢尾属植物萼片长度,其值正好介于0和1之间,这样最小值为0,最大值为1(第1列,sepallength)。
- 4. 找到鸢尾属植物萼片长度的第5和第95百分位数(第1列,sepallength)。
- 5. 把iris_data数据集中的20个随机位置修改为np.nan值。
- 6. 在iris_data的sepallength中查找缺失值的个数和位置(第1列)。
- 7. 筛选具有 sepallength(第1列)< 5.0 并且 petallength(第3列)> 1.5 的 iris_data行。
- 8.选择没有任何nan值的iris_data行
- 计算iris_data中sepallengrh(第一列)和petallength(第三列)之间的相关系数
- 10.找出iris_data是否有任何缺失值
- 11. 在numpy数组中将所有出现的nan替换为0。
- 12. 找出鸢尾属植物物种中的唯一值和唯一值出现的数量。
- 13. 将 iris_data 的花瓣长度(第3列)以形成分类变量的形式显示。定义:Less than 3 -->'small';3-5 --> 'medium';'>=5 --> 'large'。
- 14. 在 iris_data 中创建一个新列,其中 volume 是 (pi x petallength x sepallength ^ 2)/ 3 。
- 15. 随机抽鸢尾属植物的种类,使得Iris-setosa的数量是Iris-versicolor和Iris-virginica数量的两倍。
- 16. 根据 sepallength 列对数据集进行排序。
- 17. 在鸢尾属植物数据集中找到最常见的花瓣长度值(第3列)。
- 18. 在鸢尾花数据集的 petalwidth(第4列)中查找第一次出现的值大于1.0的位置。
Numpy进行鸢尾花数据集分析
使用鸢尾花数据集“iris_data”
鸢尾花数据集是sklearn中自带的一个经典数据集,在这个数据集中,包括了三类不同的鸢尾属植物:Iris Setosa,Iris Versicolour,Iris Virginica。每类收集50个样本,共150个样本。
数据集的特征:
- sepallength:萼片长度
- sepalwidth:萼片宽度
- petallength:花瓣长度
- petalwidth:花瓣宽度
以上四个特征的单位都是厘米(cm)
1. 导入鸢尾花数据集,保持文本不变
import numpy as np
from sklearn.datasets import load_iris
iris=load_iris()
iris_data=np.c_[iris['data'],iris['target']]
iris_data[:10,:]#查看前十个数据
array([[5.1, 3.5, 1.4, 0.2, 0. ],
[4.9, 3. , 1.4, 0.2, 0. ],
[4.7, 3.2, 1.3, 0.2, 0. ],
[4.6, 3.1, 1.5, 0.2, 0. ],
[5. , 3.6, 1.4, 0.2, 0. ],
[5.4, 3.9, 1.7, 0.4, 0. ],
[4.6, 3.4, 1.4, 0.3, 0. ],
[5. , 3.4, 1.5, 0.2, 0. ],
[4.4, 2.9, 1.4, 0.2, 0. ],
[4.9, 3.1, 1.5, 0.1, 0. ]])
target_map_dict={0:'Iris-setosa',1:'Iris-versicolor',2:'Iris-virginica'}
def target_map(x,map_dict):
return map_dict[x] if x in map_dict else x
target_map_vector=np.vectorize(target_map)
iris_target_maped=target_map_vector(iris['target'],target_map_dict)
array(['Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica'], dtype='<U15')
iris_data_map=np.c_[iris['data'],iris_target_maped]#合并后会统一数据类型
iris_data_map[0:10]
array([['5.1', '3.5', '1.4', '0.2', 'Iris-setosa'],
['4.9', '3.0', '1.4', '0.2', 'Iris-setosa'],
['4.7', '3.2', '1.3', '0.2', 'Iris-setosa'],
['4.6', '3.1', '1.5', '0.2', 'Iris-setosa'],
['5.0', '3.6', '1.4', '0.2', 'Iris-setosa'],
['5.4', '3.9', '1.7', '0.4', 'Iris-setosa'],
['4.6', '3.4', '1.4', '0.3', 'Iris-setosa'],
['5.0', '3.4', '1.5', '0.2', 'Iris-setosa'],
['4.4', '2.9', '1.4', '0.2', 'Iris-setosa'],
['4.9', '3.1', '1.5', '0.1', 'Iris-setosa']], dtype='<U32')
np.savetxt('iris.data',iris_data_map,fmt='%s',delimiter=',')
iris_data = np.loadtxt('iris.data', dtype=object, delimiter=',', skiprows=1)
print(iris_data[0:10])
[['4.9' '3.0' '1.4' '0.2' 'Iris-setosa']
['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']
['4.6' '3.1' '1.5' '0.2' 'Iris-setosa']
['5.0' '3.6' '1.4' '0.2' 'Iris-setosa']
['5.4' '3.9' '1.7' '0.4' 'Iris-setosa']
['4.6' '3.4' '1.4' '0.3' 'Iris-setosa']
['5.0' '3.4' '1.5' '0.2' 'Iris-setosa']
['4.4' '2.9' '1.4' '0.2' 'Iris-setosa']
['4.9' '3.1' '1.5' '0.1' 'Iris-setosa']
['5.4' '3.7' '1.5' '0.2' 'Iris-setosa']]
2求出鸢尾属植物萼片的平均值,中位数和标准差(第一列,sepallenth)
outfile='iris.data'
sepallength = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0])
print(sepallength[0:10])
[5.1 4.9 4.7 4.6 5. 5.4 4.6 5. 4.4 4.9]
print(np.mean(sepallength))
5.843333333333334
print(np.median(sepallength))
5.8
print(np.std(sepallength))
0.8253012917851409
3.创建一种标准化形式的鸢尾属植物萼片长度,其值正好介于0和1之间,这样最小值为0,最大值为1(第1列,sepallength)。
#方法一
aMax = np.amax(sepallength)
aMin = np.amin(sepallength)
x = (sepallength-aMin)/(aMax - aMin)
print(x[0:10])
#方法二
x = (sepallength-aMin)/np.ptp(sepallength)
print(x[:10])
[0.22222222 0.16666667 0.11111111 0.08333333 0.19444444 0.30555556
0.08333333 0.19444444 0.02777778 0.16666667]
[0.22222222 0.16666667 0.11111111 0.08333333 0.19444444 0.30555556
0.08333333 0.19444444 0.02777778 0.16666667]
4. 找到鸢尾属植物萼片长度的第5和第95百分位数(第1列,sepallength)。
print(np.percentile(sepallength,[5,95]))
[4.6 7.255]
5. 把iris_data数据集中的20个随机位置修改为np.nan值。
i, j = iris_data.shape
np.random.seed(20200621)
iris_data[np.random.randint(i, size=20), np.random.randint(j, size=20)] = np.nan
print(iris_data[0:10])
[['4.9' '3.0' '1.4' '0.2' 'Iris-setosa']
['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']
['4.6' '3.1' '1.5' '0.2' 'Iris-setosa']
['5.0' '3.6' '1.4' '0.2' 'Iris-setosa']
['5.4' '3.9' '1.7' '0.4' 'Iris-setosa']
['4.6' nan '1.4' '0.3' 'Iris-setosa']
['5.0' '3.4' '1.5' '0.2' 'Iris-setosa']
['4.4' '2.9' '1.4' '0.2' 'Iris-setosa']
['4.9' '3.1' '1.5' '0.1' nan]
['5.4' '3.7' '1.5' '0.2' 'Iris-setosa']]
i, j = iris_data.shape
np.random.seed(20200620)
iris_data[np.random.choice(i, size=20), np.random.choice(j, size=20)] = np.nan
print(iris_data[0:10])
[['4.9' '3.0' '1.4' '0.2' 'Iris-setosa']
['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']
['4.6' '3.1' '1.5' '0.2' 'Iris-setosa']
['5.0' '3.6' '1.4' '0.2' 'Iris-setosa']
['5.4' '3.9' '1.7' nan 'Iris-setosa']
['4.6' nan '1.4' '0.3' 'Iris-setosa']
['5.0' '3.4' '1.5' '0.2' 'Iris-setosa']
['4.4' '2.9' '1.4' '0.2' 'Iris-setosa']
['4.9' '3.1' '1.5' '0.1' nan]
[nan '3.7' '1.5' '0.2' 'Iris-setosa']]
6. 在iris_data的sepallength中查找缺失值的个数和位置(第1列)。
outfile = r'iris.data'
iris_data = np.loadtxt(outfile, dtype=float, delimiter=',', skiprows=1, usecols=[0, 1, 2,3])
i, j = iris_data.shape
np.random.seed(20200621)
iris_data[np.random.randint(i, size=20), np.random.randint(j, size=20)] = np.nan
sepallength = iris_data[:, 0]
x = np.isnan(sepallength)
print(sum(x)) # 6
print(np.where(x))#返回空值的位置
# (array([ 26, 44, 55, 63, 90, 115], dtype=int64),)
6
(array([ 26, 44, 55, 63, 90, 115]),)
7. 筛选具有 sepallength(第1列)< 5.0 并且 petallength(第3列)> 1.5 的 iris_data行。
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
sepallength = iris_data[:,0]
petallength = iris_data[:,2]
index = np.where(np.logical_and(petallength > 1.5,sepallength < 5.0))
print(index)
print(iris_data[index])
(array([ 11, 24, 29, 30, 57, 106]),)
[[4.8 3.4 1.6 0.2]
[4.8 3.4 1.9 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[4.9 2.4 3.3 1. ]
[4.9 2.5 4.5 1.7]]
8.选择没有任何nan值的iris_data行
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
i,j = iris_data.shape
np.random.seed(20201201)
iris_data[np.random.randint(i,size=20),np.random.randint(j,size=20)]=np.nan
x = iris_data[np.sum(np.isnan(iris_data),axis=1)==0]
#print(x)
print(x[0:10])
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]]
计算iris_data中sepallengrh(第一列)和petallength(第三列)之间的相关系数
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
sepalLength = iris_data[:, 0]
petalLength = iris_data[:, 2]
#方法一
m1=np.mean(sepalLength)
m2=np.mean(petalLength)
cov = np.dot(sepalLength - m1 ,petalLength - m2)
std1 = np.sqrt(np.dot(sepalLength - m1,sepalLength - m1))
std2 = np.sqrt(np.dot(petalLength - m2,petalLength - m2))
print(cov/(std1*std2))
#方法二
x = np.mean((sepalLength - m1)*(petalLength - m2))
y = np.std(sepalLength)*np.std(petalLength)
print(x/y)
#方法三
x = np.cov(sepalLength,petalLength,ddof=False)
y = np.std(sepalLength)*np.std(petalLength)
print(x[0,1]/y)
#方法四
x = np.corrcoef(sepalLength,petalLength)
print(x)
0.8717537758865833
0.8717537758865831
0.8717537758865835
[[1. 0.87175378]
[0.87175378 1. ]]
10.找出iris_data是否有任何缺失值
x = np.isnan(iris_data)
print(np.any(x))
False
11. 在numpy数组中将所有出现的nan替换为0。
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
i,j = iris_data.shape
np.random.seed(20201201)
iris_data[np.random.randint(i,size=20),np.random.randint(j,size=20)] = np.nan
iris_data[np.isnan(iris_data)] = 0
print(iris_data[0:10])
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 0. 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]]
12. 找出鸢尾属植物物种中的唯一值和唯一值出现的数量。
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=object,delimiter=',',usecols=[4])
x = np.unique(iris_data,return_counts=True)
print(x)
(array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object), array([50, 50, 50]))
13. 将 iris_data 的花瓣长度(第3列)以形成分类变量的形式显示。定义:Less than 3 -->‘small’;3-5 --> ‘medium’;’>=5 --> ‘large’。
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
petal_length_bin = np.digitize(iris_data[:,2],[0,3,5,10])
label_map = {1:'small',2:'median',3:'large',4:np.nan}
petal_length_cat = [label_map[x] for x in petal_length_bin]
print(petal_length_cat[0:10])
['small', 'small', 'small', 'small', 'small', 'small', 'small', 'small', 'small', 'small']
petal_length_bin
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
14. 在 iris_data 中创建一个新列,其中 volume 是 (pi x petallength x sepallength ^ 2)/ 3 。
outfile = 'iris.data'
iris_data = np.loadtxt(outfile,dtype=object,delimiter=',')
sepalLength = iris_data[:,0].astype(float)
petalLength = iris_data[:,2].astype(float)
volume = (np.pi *petalLength*sepalLength**2 )/3
volume=volume[:,np.newaxis]
iris_data = np.concatenate([iris_data,volume],axis=1)
print(iris_data[0:10])
[['5.1' '3.5' '1.4' '0.2' 'Iris-setosa' 38.13265162927291]
['4.9' '3.0' '1.4' '0.2' 'Iris-setosa' 35.200498485922445]
['4.7' '3.2' '1.3' '0.2' 'Iris-setosa' 30.0723720777127]
['4.6' '3.1' '1.5' '0.2' 'Iris-setosa' 33.238050274980004]
['5.0' '3.6' '1.4' '0.2' 'Iris-setosa' 36.65191429188092]
['5.4' '3.9' '1.7' '0.4' 'Iris-setosa' 51.911677007917746]
['4.6' '3.4' '1.4' '0.3' 'Iris-setosa' 31.022180256648003]
['5.0' '3.4' '1.5' '0.2' 'Iris-setosa' 39.269908169872416]
['4.4' '2.9' '1.4' '0.2' 'Iris-setosa' 28.38324242763259]
['4.9' '3.1' '1.5' '0.1' 'Iris-setosa' 37.714819806345474]]
15. 随机抽鸢尾属植物的种类,使得Iris-setosa的数量是Iris-versicolor和Iris-virginica数量的两倍。
species = np.array(['Iris-setosa','Iris-versicolor','Iris-virginica'])
species_out = np.random.choice(species,1000,p=[0.5,0.25,0.25])
print(np.unique(species_out,return_counts=True))
(array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype='<U15'), array([508, 256, 236]))
16. 根据 sepallength 列对数据集进行排序。
outfilr ='iris.data'
iris_data = np.loadtxt(outfile,dtype=object,delimiter=',')
sepalLength = iris_data[:,0]
index = np.argsort(sepalLength)
print(iris_data[index][0:10])
[['4.3' '3.0' '1.1' '0.1' 'Iris-setosa']
['4.4' '3.2' '1.3' '0.2' 'Iris-setosa']
['4.4' '3.0' '1.3' '0.2' 'Iris-setosa']
['4.4' '2.9' '1.4' '0.2' 'Iris-setosa']
['4.5' '2.3' '1.3' '0.3' 'Iris-setosa']
['4.6' '3.6' '1.0' '0.2' 'Iris-setosa']
['4.6' '3.1' '1.5' '0.2' 'Iris-setosa']
['4.6' '3.4' '1.4' '0.3' 'Iris-setosa']
['4.6' '3.2' '1.4' '0.2' 'Iris-setosa']
['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']]
17. 在鸢尾属植物数据集中找到最常见的花瓣长度值(第3列)。
outfile = 'iris.data'
iris_data=np.loadtxt(outfile,dtype=object,delimiter=',')
petalLength = iris_data[:,2]
vals,counts=np.unique(petalLength,return_counts=True)
print(vals[np.argmax(counts)])
print(np.amax(counts))
1.4
13
18. 在鸢尾花数据集的 petalwidth(第4列)中查找第一次出现的值大于1.0的位置。
outfile ='iris.data'
iris_data = np.loadtxt(outfile,dtype=float,delimiter=',',usecols=[0,1,2,3])
petalWidth = iris_data[:,3]
index = np.where(petalWidth > 1.0)
print(index)
print(index[0][0])
(array([ 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 65,
66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149]),)
50
本文地址:https://blog.csdn.net/miaochangq/article/details/110425582
上一篇: 古代选秀怎么选?揭秘其详细过程