欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

回归预测分析python数据化运营线性回归总结

程序员文章站 2022-06-26 11:50:44
目录内容介绍以 python 使用 线性回归 简单举例应用介绍回归分析。线性回归是利用线性的方法,模拟因变量与一个或多个自变量之间的关系;对于模型而言,自变量是输入值,因变量是模型基于自变量的输出值,...

内容介绍

以 python 使用 线性回归 简单举例应用介绍回归分析。

线性回归是利用线性的方法,模拟因变量与一个或多个自变量之间的关系;

对于模型而言,自变量是输入值,因变量是模型基于自变量的输出值,适用于x和y满足线性关系的数据类型的应用场景。

用于预测输入变量和输出变量之间的关系,特别是当输入变量的值发生变化时,输出变量的值也随之发生变化。

回归模型正是表示从输入变量到输出变量之间映射的函数。

线性回归几乎是最简单的模型了,它假设因变量和自变量之间是线性关系的,一条直线简单明了。

一般应用场景

连续性数据的预测:例如房价预测、销售额度预测、贷款额度预测。

简单来说就是用历史的连续数据去预测未来的某个数值。

线性回归的常用方法

最小二乘法、贝叶斯岭回归、弹性网络回归、支持向量机回归、支持向量机回归等。

线性回归实现

import numpy as np  # numpy库
from sklearn.linear_model import bayesianridge, linearregression, elasticnet,lasso  # 批量导入要实现的回归算法
from sklearn.svm import svr  # svm中的回归算法
from sklearn.ensemble.gradient_boosting import gradientboostingregressor  # 集成算法
from sklearn.model_selection import cross_val_score  # 交叉检验
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score  # 批量导入指标算法
import pandas as pd  # 导入pandas
import matplotlib.pyplot as plt  # 导入图形展示库
import random

# 随机生成100组包含5组特征的数据
feature = [[random.random(),random.random(),random.random(),random.random(),random.random()] for i in range(100)]
dependent = [round(random.uniform(1,100),2) for i in range(100)]

# 训练回归模型
n_folds = 6  # 设置交叉检验的次数
model_br = bayesianridge()  # 建立贝叶斯岭回归模型对象
model_lr = linearregression()  # 建立普通线性回归模型对象
model_etc = elasticnet()  # 建立弹性网络回归模型对象
model_svr = svr()  # 建立支持向量机回归模型对象
model_la = lasso()  # 建立支持向量机回归模型对象
model_gbr = gradientboostingregressor()  # 建立梯度增强回归模型对象
model_names = ['bayesianridge', 'linearregression', 'elasticnet', 'svr', 'lasso','gbr']  # 不同模型的名称列表
model_dic = [model_br, model_lr, model_etc, model_svr,model_la, model_gbr]  # 不同回归模型对象的集合
cv_score_list = []  # 交叉检验结果列表
pre_y_list = []  # 各个回归模型预测的y值列表
for model in model_dic:  # 读出每个回归模型对象
    scores = cross_val_score(model, feature, dependent, cv=n_folds)  # 将每个回归模型导入交叉检验模型中做训练检验
    cv_score_list.append(scores)  # 将交叉检验结果存入结果列表
    pre_y_list.append(model.fit(feature, dependent).predict(feature))  # 将回归训练中得到的预测y存入列表

线性回归评估指标

model_gbr:拟合贝叶斯岭模型,以及正则化参数lambda(权重的精度)和alpha(噪声的精度)的优化。

model_lr:线性回归拟合系数w=(w1,…)的线性模型,wp)将观测到的目标与线性近似预测的目标之间的残差平方和降到最小。

model_etc:以l1和l2先验组合为正则元的线性回归。

model_svr:线性支持向量回归。

model_la:用l1先验作为正则化器(又称lasso)训练的线性模型

# 模型效果指标评估
model_metrics_name = [explained_variance_score, mean_absolute_error, mean_squared_error, r2_score]  # 回归评估指标对象集
model_metrics_list = []  # 回归评估指标列表
for i in range(6):  # 循环每个模型索引
    tmp_list = []  # 每个内循环的临时结果列表
    for m in model_metrics_name:  # 循环每个指标对象
        tmp_score = m(dependent, pre_y_list[i])  # 计算每个回归指标结果
        tmp_list.append(tmp_score)  # 将结果存入每个内循环的临时结果列表
    model_metrics_list.append(tmp_list)  # 将结果存入回归评估指标列表
df1 = pd.dataframe(cv_score_list, index=model_names)  # 建立交叉检验的数据框
df2 = pd.dataframe(model_metrics_list, index=model_names, columns=['ev', 'mae', 'mse', 'r2'])  # 建立回归指标的数据框

回归预测分析python数据化运营线性回归总结
回归预测分析python数据化运营线性回归总结

线性回归效果可视化

# 模型效果可视化
plt.figure()  # 创建画布
plt.plot(np.arange(len(feature)), dependent, color='k', label='true y')  # 画出原始值的曲线
color_list = ['r', 'b', 'g', 'y', 'p','c']  # 颜色列表
linestyle_list = ['-', '.', 'o', 'v',':', '*']  # 样式列表
for i, pre_y in enumerate(pre_y_list):  # 读出通过回归模型预测得到的索引及结果
    plt.plot(np.arange(len(feature)), pre_y_list[i], color_list[i], label=model_names[i])  # 画出每条预测结果线
plt.title('regression result comparison')  # 标题
plt.legend(loc='upper right')  # 图例位置
plt.ylabel('real and predicted value')  # y轴标题
plt.show()  # 展示图像

回归预测分析python数据化运营线性回归总结

数据预测

# 模型应用
new_point_set = [[random.random(),random.random(),random.random(),random.random(),random.random()],
                 [random.random(),random.random(),random.random(),random.random(),random.random()],
                 [random.random(),random.random(),random.random(),random.random(),random.random()],
                [random.random(),random.random(),random.random(),random.random(),random.random()]]  # 要预测的新数据集

print("贝叶斯岭回归模型预测结果:")
for i, new_point in enumerate(new_point_set):  # 循环读出每个要预测的数据点
    new_pre_y = model_gbr.predict(np.array(new_point).reshape(1,-1))
    print ('预测随机数值 %d 是:  %.2f' % (i + 1, new_pre_y))  # 打印输出每个数据点的预测信息
print (50 * '-')
print("普通线性回归模型预测结果:")
for i, new_point in enumerate(new_point_set):  # 循环读出每个要预测的数据点
    new_pre_y = model_lr.predict(np.array(new_point).reshape(1,-1))
    print ('预测随机数值 %d 是:  %.2f' % (i + 1, new_pre_y))  # 打印输出每个数据点的预测信息
print (50 * '-')
print("弹性网络回归模型预测结果:")
for i, new_point in enumerate(new_point_set):  # 循环读出每个要预测的数据点
    new_pre_y = model_etc.predict(np.array(new_point).reshape(1,-1))
    print ('预测随机数值 %d 是:  %.2f' % (i + 1, new_pre_y))  # 打印输出每个数据点的预测信息
print (50 * '-')   
print("支持向量机回归模型预测结果:")
for i, new_point in enumerate(new_point_set):  # 循环读出每个要预测的数据点
    new_pre_y = model_svr.predict(np.array(new_point).reshape(1,-1))
    print ('预测随机数值 %d 是:  %.2f' % (i + 1, new_pre_y))  # 打印输出每个数据点的预测信息
print (50 * '-')   
print("拉索回归模型预测结果:")
for i, new_point in enumerate(new_point_set):  # 循环读出每个要预测的数据点
    new_pre_y = model_la.predict(np.array(new_point).reshape(1,-1))
    print ('预测随机数值 %d 是:  %.2f' % (i + 1, new_pre_y))  # 打印输出每个数据点的预测信息

回归预测分析python数据化运营线性回归总结

以上就是回归预测分析python数据化运营线性回归总结的详细内容,更多关于python数据化运营线性回归的资料请关注其它相关文章!